NOVA SCOTIA DEPARTMENT OF TRANSPORTATION & PUBLIC WORKS

HIGHWAY 102- ROUTE 214
INTERCHANGE AREA TRANSPORTATION STUDY

January, 2003 1199-1

NOVA SCOTIA DEPARTMENT OF TRANSPORTATION & PUBLIC WORKS

HIGHWAY 102 - ROUTE 214 INTERCHANGE AREA TRANSPORTATION STUDY

TABLE OF CONTENTS

			Page
1.0	INT	TRODUCTION	1
	1.1		
	1.2	Objective	1
	1.3	Background	1
	210	Previous Studies	2
2.0	STU	UDY AREA	4
	2.1	Physical Description	
	2.2	Growth & Development Scenarios	4
	2.3	Existing and Horizon Traffic	0
		**************************************	/
3.0	TRA	FFIC MODELLING	
			9
	3.1	Signal Warrant Analyses	_
	3.2	Level of Service Analyses	9
	3.3	Potential Improvements and Areas of Concern	. 10
4.0	ACC	ESS MANAGEMENT PLAN	. 17
5.0	FUN	CTIONAL DESIGN	. 19
	5.1		
	5.2	Preferred Improvements	. 19
	5.3	Upgrading Strategy (Phasing and Timing)	. 20
	5,5	Functional Plan Criteria	. 23
6.0	COST	T ESTIMATE	. 24
7.0	CON	CLUSIONS	. 26
8.0	RECO	OMMENDATIONS	. 29
	APPE	ENDICES	

1.0 INTRODUCTION

The Nova Scotia Department of Transportation & Public Works (TPW) commissioned O'Halloran Campbell Consultants (O'HCC) to carry out this study concerning the implications for the Route 214 road network in the vicinity of the Highway 102 interchange as a result of proposed expansions of existing developments and ongoing growth of the surrounding area. The study was based on TPW's Terms of Reference dated May 13, 2002 (see **Appendix A**). This report provides the results of the study.

1.1 OBJECTIVE

The objectives of this transportation study are:

- Assess Route 214 in the interchange area with existing traffic volumes (2002).
- · Assess Route 214 in the interchange area with 20 year horizon traffic volumes (2022).
- · Identify potential infrastructure improvements including phasing.
- Identify access management measures.
- Conduct a functional design and cost estimate of the preferred improvement options.

The overall intent of the study is to identify the requirements to provide a safe and efficient transportation network that will facilitate future residential, commercial and industrial growth and development.

1.2 BACKGROUND

Elmsdale has experienced significant growth in recent years due in part to population growth and various developments. The Municipality of East Hants has experienced the highest percentage growth of all the municipalities in Nova Scotia over the last decade. The study area is shown in Figure 1.1 on the following page. The Elmsdale Shopping Centre and the Atlantic Superstore are within the study area and both developments have plans for future expansion. Further commercial developments are expected to take place in the East Hants Business Park and in the area of the interchange. The Municipality has zoned the land as commercial, fronting Route 214, east of the

HIGHWAY 102/ROUTE 214 INTERCHANGE AREA TRANSPORTATION STUDY

FIGURE 1.1

O'HALLORAN CAMPBELL consultants limited

study area. The rapid growth and commercialization of the area is placing increasing stress on the roadway infrastructure system.

TPW called for proposals for a study to assess the long term transportation needs in the Highway 102/Route 214 interchange area. The study components are to include traffic analyses using collected data, functional designs of area improvements and an appropriate access management plan required to ensure safe and efficient interchange area operations with future growth and development. The existing and the proposed configurations are to be assessed over a 20 year horizon period. O'Halloran Campbell was retained to conduct the study.

1.3 Previous Studies

Some of the previous studies conducted for the Highway 102/Route 214 (Elmsdale) Interchange area include the following:

- Elmsdale Shopping Centre: Traffic Impact Analysis, Delphi Systems Incorporated, March 2002.
- The Final Report, Traffic Impact Study, Elmsdale Superstore Site Development, Elmsdale, Nova Scotia, Atlantic Road and Traffic Management, April 2002.
- Municipality of East Hants, Route 214 Corridor Study, Streetwise Traffic Engineering, April 1998.
- Municipality of East Hants, Socio-Economic Study, August 1999.

Only the Introduction chapter and data were provided for the Elmsdale Shopping Centre and the Elmsdale Superstore reports. The full report was provided for the Route 214 Corridor Study and the Socio-Economic Study.

The Elmsdale Shopping Centre report, conducted for Atlantic Shopping Centres, details the impacts on the Elmsdale Shopping Centre signalized intersection and the Route 214/Northbound Highway 102 Ramp terminus intersection by the proposed 100,000 sq. ft. expansion of the Elmsdale Shopping Centre. The main recommendation was to signalize the Route 214/Northbound Highway 102 Ramp terminus intersection and coordinate it with the Elmsdale Shopping Centre intersection signals.

The Elmsdale Superstore report, conducted for Loblaws Properties Limited, assesses the impact on the Superstore / Park Road / Route 214 intersection from the proposed 153,000 sq. ft. expansion of the Superstore. The improvements identified in the report include a right-in only entrance to the Superstore on Route 214 approximately 80 m west of the Southbound Ramp terminal and the signalization and additional left turn lanes at the Superstore/Park Rd./Route 214 intersection. It is understood that the right-in only entrance is proceeding in the near term.

The Route 214 Corridor Study, conducted for the Municipality of East Hants, is a regional assessment of Route 214. The objective of the study was to assess the existing configuration with increased traffic volumes anticipated from the new commercially zoned area and identify geometric improvements to manage the estimated additional volumes. Level of Service (LOS) analyses were conducted for traffic along Route 214 at the signalized intersection at Trunk 2 and the Elmsdale Shopping Centre, and for a typical unsignalized commercial driveway intersection. The traffic flow was simulated using a QRS model. Recommendations for a short term plan included widening Route 214 to accommodate a centre two-way left turn lane with curb and sidewalks on both sides in areas along Route 214 where any commercial redevelopment occurred. Recommendations for a long term plan included diversion of additional traffic outside the interchange area. The potential solutions for this included a North Lantz interchange, a South Lantz interchange, a south collector (south of Route 214 and east of Highway 102) and a north collector (north of Route 214 and east of Highway 102). It is understood that TPW favoured the South Lantz Interchange solution (beyond the scope of this study).

The Socio-Economic Study involved the assessment of population growth rates between 1991 and 1996, based on Census statistics for all of East Hants, including Elmsdale and surrounding areas. A projection of population growth for the horizon year of 2021 was estimated. Other statistics were reviewed in the study including marital status, languages, aboriginal population, education, income levels, housing, and labour force. The average annual population growth rate over twenty five years (1996 to 2021), for the regional services area of Enfield, Elmsdale and Lantz, was estimated to be 3.2% per year. This is discussed further in Section 2.2.

2.0 STUDYAREA

2.1 PHYSICAL DESCRIPTION

The study area includes Route 214 from the Superstore/East Hants Business Park (Park Road) to the Elmsdale Shopping Centre (approximately 550 m). Route 214 is a two-lane collector highway that crosses over Highway 102, spanning between Trunk No. 14 and Trunk No. 2. The study area includes the Superstore/Park Road intersection, the terminus of the Southbound and Northbound Highway 102 Ramps, and the signalized intersection at the Elmsdale Shopping Centre. The study area includes several residential driveways and one commercial driveway between the Superstore and Highway 102. The driveways and the intersections are in close proximity to one another. (See Figure 2.1)

Along Route 214, west of the Superstore, there are many farms and a few commercial/residential developments sparsely distributed. There are no signalized intersections near the study area, west of the Superstore.

The Superstore site includes businesses such as Superstore grocery store, NS liquor store (NSLC) and a Petro Canada gas bar with a convenience store. The site is approximately 33 acres of land with almost 60,000 sq. ft. of occupied commercial space and it is owned by Loblaws Properties Limited. The site is not fully developed. Access to the site is via an unsignalized intersection on Route 214 opposite Park Road and is located approximately 220 m west of the Highway 102 Southbound Ramp intersection. There is a service vehicle driveway further west than the main Superstore driveway. The Superstore driveway has a left-turn lane and a shared through right-turn lane for traffic exiting and one receiving lane for traffic entering the Superstore site. The clear throat distance on the Superstore driveway is approximately 25 m.

The East Hants Business Park has 24 businesses including automotive repair shops, metal shops, equipment rentals, recycling plant, manufacturing facilities, etc. The site is approximately 35 acres with 28 acres of it fully developed. The land is owned and managed by the Municipality of East Hants. Access to the site is via the unsignalized intersection with Route 214 described above for the

Superstore, with one lane in each direction. There is a 3 km long two lane loop road through the park.

The Highway 102 overpass has one lane in each direction with a narrow sidewalk on the south side of the bridge. On the west side of the Highway 102 interchange, Route 214 has two lanes with gravel shoulders and some residential/commercial driveways along the south side. There is a reduced speed limit of 50 km/h approximately 100 m west of the interchange. The westbound speed limit is increased from 50 km/h to 70 km/h at the same location.

In the vicinity of the Elmsdale Shopping Centre, Route 214 has three lanes with curb and sidewalk on each side. Route 214 is three lanes wide from about 75 m east of the Elmsdale Shopping Centre to about 50 m west of the Highway 102 Northbound Ramps. In each case there is an eastbound and a westbound through lane and the third lane is designated as follows:

- · east of study area shared left-turn lane
- east limit of study area to Elmsdale Shopping Centre shared left-turn lane
- Elmsdale Shopping Centre to 50 m west of the Northbound Ramps eastbound left turn storage lane

The Elmsdale Shopping Centre is owned by Sobeys and it includes businesses such as Sobeys, Subway, Pharmasave, Radio Shack, Scotia Bank, Tim Horton's, Wilson's Fuels, etc. The shopping centre is 103,000 sq. ft. on 16 acres of land, with 30 additional acres for potential development. Access to the shopping centre is via one signalized intersection on Route 214 approximately 80 m east of the Highway 102 Northbound Ramp intersection. The shopping centre intersection is a tee with both a right and left turn lane for traffic exiting and two receiving lanes for traffic entering the shopping centre site. The clear throat distance is approximately 35 m.

Some of the businesses found east of the Elmsdale Shopping Centre include McDonald's, an Irving service station, a bank, a flower shop, auto parts shops, travel agency, church, video store, etc. The next signalized intersection, along Route 214, is approximately 1 km east (at Trunk 2) of the shopping centre, with an active rail crossing just beyond Trunk 2.

2.2 GROWTH & DEVELOPMENT SCENARIOS

A traffic growth of 2% compounded annually was assumed, based on TPW's experience. From the East Hants Socio-Economic study, it was found that there were 4,483 people in the serviced areas of Elmsdale, Enfield and Lantz in 1996 and that 10,150 people are projected for 2021 (see **Appendix B**). Using trip generation for "Single Family Detached Housing" during the p.m. peak hour, it was found that this would equate to about 934 trip ends per hour in 1996 and 1,880 trip ends per hour in 2021 or about 2.8% traffic growth compounded annually. This is a broad approximation of possible growth and it is considered supportive of the 2% traffic growth used.

The 2% growth rate per year over 20 years (or 49%) was applied to the background traffic volumes, i.e. traffic unrelated to the Superstore site, the Business Park site or the Elmsdale Shopping Centre site, to develop the 20 year horizon traffic excluding development. This includes east and westbound traffic not turning into any of the developments and all traffic movements at both the north and southbound ramp terminals.

The Elmsdale Shopping Centre is planning a 100,000 sq ft commercial retail expansion including a building supply store and other commercial type outlets. This would almost double the size of the current Elmsdale Shopping Centre from 103,000 sq ft to 203,000 sq ft.

The Superstore is planning a 153,000 sq ft expansion, in addition to the existing 55,500 sq ft, over the next 20 years. Some of the expansions to the Superstore will include a Liquor Store expansion, home improvement store, and general expansion to the Superstore facilitating various specialty retail shops.

ITE Trip Generation 6th Edition was used to estimate the additional traffic volumes generated by the Superstore site expansions and for the Elmsdale Shopping Centre site expansions. These developments were treated as "Shopping Centre". The generated trips were reduced by 25% for passby and then added to the background traffic volumes and distributed on the basis of the existing volumes. The following table (Table 2.1) summarizes the development expansions and the resulting ITE trip generation results:

TABLE 2.1 - ITE TRIP GENERATION RESULTS

ITE Trip Genera	tion - Estima	ted Additional Traffic before	Pass-by Redu	ıction
Development	Expansion (sq. ft.)	ITE Type	Trip Ends In (veh/hr)	Trip Ends Out (veh/hr)
Superstore	153,000	Shopping Centre, p.m. peak	400	433
Elmsdale Shopping Centre	100,000	Shopping Centre, p.m. peak	301	327

The Business Park is projected to increase from approximately 28 to 192 acres (700%) over the next 20 years. The turning movement counts of July 5, 2002 conducted for this study, were used as a representation of the currently developed 28 acres, although the existing volumes are only about 54% of the volumes predicted by the ITE Trip Generation. On this basis, the existing traffic volumes were multiplied by 7 to obtain the developed growth for the East Hants Business Park over the next 20 years, which is 14% less than the volume predicted using ITE Trip Generation.

2.3 EXISTING AND HORIZON TRAFFIC

Manual traffic counts were conducted on Friday, July 5, 2002 from 3:30 pm to 5:30 pm for the following intersections:

- Route 214/Superstore/Park Rd.
- Route 214/Southbound Ramp
- Route 214/Northbound Ramp
- Route 214/Elmsdale Shopping Centre

The count summaries can be found in **Appendix C**. The traffic volumes were not factored using Average Annual Weekday Traffic (AAWT), which is considered to be somewhat conservative. The existing traffic count data (year 2002) was balanced (i.e. adjusted to account for inconsistencies in counts between adjacent intersections) and the adjusted volumes are shown in Figure 2.2, the estimated 20 year horizon traffic volumes excluding additional development in the study area (year 2022) are shown in Figure 2.3 and the estimated 20 year horizon traffic volumes including additional development in the study area (year 2022) are shown in Figure 2.4. The 20 year horizon figures have been prepared on the basis that the right-in driveway to the Superstore will be in place. It was

assumed that 50% of the westbound right turns will use the Route 214/Superstore/Park Rd. intersection and 50% will use the right-in Superstore entrance.

In order to estimate 20 year horizon traffic volumes excluding and including development (2022), the growth and development scenarios of Section 2.2 were applied.

3.0 TRAFFIC MODELLING

3.1 SIGNAL WARRANT ANALYSES

Signal warrant analyses were performed for the three unsignalized intersections in the study area during the p.m. peak, with the following scenarios considered:

- Scenario 1 Elmsdale Shopping Centre signalized
- Scenario 2 Elmsdale Shopping Centre and the Northbound Ramp terminal signalized
- Scenario 3 Elmsdale Shopping Centre, Northbound Ramp terminal and Superstore/Park
 Rd. signalized

The results are summarized in Table 3.1 and the worksheets are provided in **Appendix D**. Priority points of 100 or more are considered to warrant traffic signals.

TABLE 3.1 - PM PEAK SIGNAL WARRANT ANALYSIS RESULTS

Signalization Priority Points										
Intersection with Rte 214	Existing Traffic (2002)	20 Year Horizon (2022) Excluding Development	20 Year Horizon (2022) Including Development							
Superstore/Park Rd Scenario 1	42.7	56.2	289.5							
- Scenario 2	39.9	52.8	282.6							
Southbound Ramp - Scenario 1	42.2	71.4	146.8							
- Scenario 2	35.3	57.5	122.3							
- Scenario 3	17.6	18.0	43.3							
Northbound Ramp - Scenario 1	109.5	167.1	341.5							

The total priority points for the Northbound Ramp intersection exceeds 100 points and it is considered to warrant signals for the existing and future scenarios.

The total priority points at the Route 214/Superstore/Park Rd. intersection are high for the 20 year horizon including development, at 289.5. With the addition of the proposed expansion, signals would be warranted.

At the Route 214/Southbound Ramp intersection, signals would not be warranted if the Superstore/Park Rd. and Northbound Ramp intersection are signalized.

3.2 LEVEL OF SERVICE ANALYSES

The Highway Capacity Manual defines Level of Service (LOS) as being a qualitative measure describing operational conditions within a traffic stream, and their perception by motorists and/or passengers. Some of the factors considered when measuring the LOS of a traffic movement include speed and travel time, freedom to manoeuver, traffic interruptions, comfort and convenience, and safety. The six levels of service are A to F, A representing free flow conditions and F representing forced or breakdown flow.

The LOS analyses were carried out for the four study intersections along Route 214 using the Highway Capacity Software (HCS) 2000. The analyses were conducted for the existing 2002 traffic volumes and for the estimated 20 year horizon 2022 traffic volumes, excluding and including developments. The intersections were initially analysed for the existing conditions, i.e. Superstore, Southbound Ramp and Northbound Ramp as unsignalized, and the results are summarized in Table 3.2. The detailed results are provided in **Appendix E**. The acronyms used in the table are defined as follows:

Acronym	Definition
NB	Northbound
SB	Southbound
EB	Eastbound
WB	Westbound
L	Left
Т	Through
R	Right

The Southbound Ramp was modelled as two lanes because the ramp flares out at Route 214 permitting vehicles to use it as though there was a short auxiliary lane for right turns.

The existing signal timing and phasing was used for the Elmsdale Shopping Centre (see **Appendix F**).

TABLE 3.2 - HCS LOS RESULTS WITHOUT IMPROVEMENTS

		Existing	g (2002)		20 Ye	ear Horiz evelopme	on Excli nts (202	uding 2)	20 Year Horizon Including Developments (2022)					
Movement	V/C	Queue Length (# vehs)	Delay (s)	LOS	V/C	Queue Length (# vehs)	Delay (s)	Los	V/C	Queue Length (# vehs)	Delay (s)	LOS		
		Ro	ute 214S	upersto	re/Pari	k Rd. Uns	ignalize	d PM	Peak					
EBLTR	0.03	0.09	8.8	A	0.03	0.09	9.0	A	0.06	0.21	9.2	A		
WBLTR	0.06	0.18	7.7	A	0.06	0.19	7.9	A	0.47	2.63	10.5	В		
NBLTR	0.27	1.09	16.7	C	0.34	1.48	21.3	С	Err	Err	Err	F		
SBL	1.08	10.76	128.6	F	1.58	16.72	344.1	F	Err	Err	Err	F		
SBTR	0.12	0.41	12.1	В	0.15	0.52	14.1	В	1.55	12.83	356.6	F		
		Ro	ute 214/S	Southb	ound R	amp Uns	ignalized	I PM I	Peak					
EBTR		N.	D	77.20		NI)		ND					
WBLT	0.17	0.61	9.0	Α	0.25	0.97	9.7	A	0.51	2.89	18.5	С		
SBLT	0.90	5.80	122.6	F	2.64	16.88	881.1	F	Err	Err	Err	F		
SBR	0.13	0.43	13.8	В	0.25	0.96	18.3	С	1.10	8.45	170.7	F		
		Ro	ute 214/I	Vorthbo	ound R	amp Unsi	gnalized	PM I	Peak			BAN A		
EBL	0.07	0.23	9.2	Α	0.10	0.34	10.0	A	0.37	1.72	15.9	С		
EBT		N	D			NI			ND					
WBTR		N	D			NI)		ND					
NBLT	1.13	13.80	130.1	F	2.35	40.13	F	19.5	93.06	Err	F			
NBR	0.49	2.74	14.3	В	0.79	7.91	26.7	D	1.36	29.04	199.7	F		
	- r. r.	Route	214/Elm	sdale S	Shoppin	ig Centre	Signali	zed PN	1 Peak					
EBL	0.68	6.7	11.3	В	0.71	7.1	13.5	В	1.27	37.8	147.2	F		
EBT	0.45	8.2	6.5	A	0.72	16.5	10.3	В	0.99	36.9	37.3	D		
WBT	0.56	9.0	16.0	В	0.83	15.7	25.8	C	1.23 49.2		136.0	F		
WBR	0.21	2.4	13.4	В	0.21	2.4	13.4	В	0.43	5.2	14.8	В		
SBL	0.55	8.0	17.3	В	0.55	8.0	17.3	В	0.93	18.1	41.7	Đ		
SBR	0.28	3.4	15.1	В	0.28	3.4	15.1	В	0.50	6.4	16.6	В		
Intersection			12.4	В			16.0	В		···	77.6	E		

The LOS results are summarized in Figures 3.1, 3.2 and 3.3 on the following three pages. Error results (Err) were obtained for many of the 20 year horizon traffic movements. Where 'Err' is indicated in the table, the HCS reports show blank result fields to indicate that delays are in excess of 999.9 seconds, i.e. out of the software range. This indicates that queue lengths may become infinitely large and the volume infinitely exceeds the capacity, i.e. V/C (volume over capacity)

becomes undefined. This result occurs for movements with traffic conflicts such as left turns. The performance of an unsignalized intersection is considered unacceptable in these cases.

In other instances, a blank result field in HCS also represents a traffic movement which experiences no delays therefore a result is not required, i.e. volume is infinitely small compared to the capacity therefore V/C infinitely approaches zero. This result is indicated by 'ND' in the table. This result occurs for movements with no traffic conflicts such as through and right turns.

Route 214/Superstore/Park Rd. with existing 2002 traffic has a LOS F for the southbound left turn exiting the Superstore site, with more than a 2 minute delay and an 11 vehicle queue. Improvements are considered to be warranted, which might include signals. The V/C ratios for the 20 year horizon with development becomes undefined due to excessive volumes and inadequate capacity. Significant improvements are warranted for the Superstore driveway and Park Road by 2022.

Route 214/Southbound Ramp with existing 2002 traffic has a LOS F for traffic exiting Highway 102 southbound onto Route 214 eastbound (southbound shared through-left), with more than a 2 minute delay and a 6 vehicle queue. For the 20 year horizon, it is estimated that southbound traffic will experience excessive queues, potentially backing up down the ramp. The Southbound Ramp warrants improvements for the southbound left turn at the time of signalization and for the intersection by 2022.

Route 214/Northbound Ramp with existing 2002 traffic has a LOS F for the northbound left, with delays over 2 minutes and a 14 vehicle queue. For the 20 year horizon, it is estimated that northbound traffic will experience excessive queues, potentially backing up onto Highway 102. Improvements are warranted for the northbound left in the near term and for the intersection by 2022.

Route 214/The Elmsdale Shopping Centre intersection with existing 2002 traffic volumes is at LOS B or better and is considered acceptable. With background traffic growth to 2022 the LOS remains at LOS B. The 20 year horizon traffic volumes with development reduces the LOS from LOS B to LOS E and an overall delay degradation of 65 seconds. Improvements are considered to be warranted by 2022 with the development and this is discussed further in Section 3.3.

The signal warrant analyses indicated that signals are warranted at Route 214/Northbound Ramp for the existing and at the Route 214/Superstore/Park Rd. when further development takes place. The LOS analyses in Table 3.2 indicate that signals may be warranted at Route 214/Southbound Ramp for the existing. An LOS analysis was carried out assuming the three unsignalized intersections are signalized as of 2002. The results are summarized in Table 3.3.

TABLE 3.3 - HCS LOS RESULTS WITH SIGNALS

		Existing	(2002)		20 Ye	ear Horiz evelopme	on Excli nts (202	uding 2)	20 Year Horizon Including Developments (2022)						
Movement	V/C	Queue Length (# vehs)	Delay (s)	Los	V/C	Queue Length (# vehs)	Delay (s)	LOS	V/C	Queue Length (# vehs)	Delay (s)	Los			
		Ro	oute 214/	Supers	tore/Pa	rk Rd. Si	gnalized	PM P	eak		"清清"等。	W			
EBLTR	0.67	10.5	40.8	D	0.81	16.4	51.5	D	1.58	45.0	323.9	F			
WBLTR	0.84	19.2	16.4	В	0.96	27.8	19.9	В	2.32	227.1	620.6	F			
NBLTR	0.18	4.9	20.3	С	0.21	5.8	27.4	C	2.36	134.1	659.1	F			
SBL	0.36	7.4	17.1	В	0.43	9.2	24.6	С	1.27	49.0	172.9	F			
SBTR	0.09	2.1	12.9	В	0.10	2.6	18.2	В	0.23	6.2	16.4	В			
Intersection			20.6	C			26.7	С			494.6	D			
r ±ha		R	oute 21 <i>4)</i>	South	bound .	Ramp Sig	nalized	РМ Ре	ak	9	* 1				
EBTR	0.94	26.1	55.6	Е	1.19	45.2	138.1	F	2.19	182.7	570.1	F			
WBLT	0.83	10.0	6.6	A	1.07	45.9	53.0	D	2.09	210.1	501.7	F			
SBLT	0.28	5.8	31.7	С	0.54	9.8	45.3	D	0.58	Err	45.3	D			
SBR	0.19	3.2	30.7	С	0.37	5.5	41.7	D	0.59	10.9	47.6	D			
Intersection			25.4	С		`	76.1	Е			481.5	F			
, F		R	oute 214/	North	bound l	Ramp Sig	nalized	РМ Ре	ak						
EBL	0.14	0.4	1.2	Α	0.22	3.1	15.2	В	0.54	8.8	25.1	C			
EBT	0.32	1.9	1.3	A	0.41	2.4	1.5	A	0.72	7.8	1.9	Ā			
WBTR	0.78	22.3	16.2	В	0.98	46.2	39.3	\mathbf{D}^{B}	1.54	140.9	266.3	F			
NBLT	0.53	14.0	27.9	C	0.72	23.4	33.8	C	1.28	72.3	173.0	F			
NBR	0.66	16.5	32.0	С	0.89	30.8	47.0	D	1.18	54.0	134.7	F			
Intersection			18.0	В			32.0	C			151.3	F			
e de la companya de l	185 F	Route	214/Elm	sdale S	Shoppin	g Gentre	Signali	zed PN	Peak						
EBL	0.68	6.7	11.3	в	0.71	7.1	13.5	В	1.27	37.8	147.2	F			
EBT	0.45	8.2	6.5	Ā	0.72	16.5	10.3	В	0.99	36.9	37.3	D			
WBT	0.56	9.0	16.0	В	0.83	15.7	25.8	$\frac{D}{C}$	1.23	49.2	136.0	F			
WBR	0.21	2.4	13.4	В	0.21	2.4	13.4	В	0.43	5.2	14.8	B			
SBL	0.55	8.0	17.3	В	0.55	8.0	17.3	В	0.93	18.1	41.7	D			
SBR	0.28	3.4	15.1	B	0.28	3.4	15.1	В	0.50	6.4	16.6	В			
Intersection			12.4	В			16.0	В	0.50		77.6	E			
1199-1 /Ja	nuary. 20	03	1	~	100		10.0	ارم			77.0				

1199-1 /January, 2003 G:\1199-1\REPORT\CHAPTERS.V5.wpd The LOS results are summarized in Figures 3.4, 3.5 and 3.6 on the following three pages.

Signalizing the four study intersections should improve the LOS of each intersection to an acceptable level, i.e. LOS D or better, for existing traffic volumes (2002), without physical improvements, with the exception of the Southbound Ramp. Physical improvements may be warranted at this location with existing (2002) traffic volumes..

With 20 year horizon traffic volumes excluding developments (2022), the Route 214/Superstore/Park Rd., the Route 214/Elmsdale Shopping Centre and the Route 214/Northbound Ramp intersections operate at an acceptable level (i.e. LOS D) with signals and no physical changes. Again, the Route 214/Southbound Ramp intersection would be at LOS E and it should have physical improvements at the time of signalization.

With 20 year horizon traffic volumes including developments (2022), all four intersections operate at an undesirable level (i.e. LOS E or worse) with signalization only. This demonstrates that after development, physical changes will be warranted.

3.3 POTENTIAL IMPROVEMENTS AND AREAS OF CONCERN

In order to improve the Highway 102/Route 214 interchange area traffic network, the following improvement options were considered and analysed to assess the effect of the change. The options were applied to horizon 2022 traffic volumes with additional developments. The LOS results are summarized in the table following the option descriptions and the detailed results are found in **Appendix G**. New signals would be coordinated with the adjacent signals. A protected signal phase signifies a flashing green light for left turn traffic movements and a permitted signal phase signifies a solid green light in which left turning traffic must yield to on-coming through traffic.

Note - the optimal signal phasing was selected as being westbound traffic initially protected followed by east/westbound traffic permitted, then southbound traffic protected, followed by north/southbound traffic permitted, unless noted otherwise.

Option 1 - Signalize the Route 214/Northbound Ramp intersection.

Option 2 - Signalize the Route 214/Northbound Ramp and the Route 214/Superstore/Park Rd. intersections.

Option 3 - Signalize three intersections (Option 2) and widen Route 214 to four lanes with dual left and right turn lanes exiting the developments.

Option 4 - Signalize three intersections (Option 2) and widen Route 214 to three lanes, with two lanes westbound.

Option 5 - Signalize three intersections (Option 2) and widen Route 214 to three lanes, with two lanes eastbound.

Option 6 - Signalize the four study intersections (Option 2) and widen Route 214 to three lanes, with two lanes westbound.

Option 7 - Option 6 but with the centre lane serving as a shared left turn lane.

Option 8 - Signalize the four study intersections and widen Route 214 to four lanes, with dual right and left turn lanes for traffic exiting the developments.

Option 9 to 13 - Same as Option 8 with variations to the signal phasing at each intersection, as follows:

- Protected west, then permitted east/west, and permitted north/south
- Protected east/west left, then permitted east/west, protected north/south left and permitted north/south
- East/west and north/south all permitted
- Protected east, then permitted east/west, protected north and permitted north/south
- Protected east, west, north and south

Option 14 - Same as Option 8 but omitting dual right turns exiting from the developments.

Option 1		Option 2		Option 3		lô. c					1																
Movemen	t LOS		t LOS	Movement	LOS	Option 4		Option 5	-	Option 6		Option 7		Option 8		Option 9		Option 10		10-6- 41							
The second second				4/Superstore	/Pork Do	Movement	LOS	Movement	LOS	Movement	LOS	Movement	LOS	Movement	LOS	Movement	LOS	Movement	100	Option 11		Option 12		Option 13		Option 14	
100000			redic 27	- Juperstore	Praik RO		_								- No. of the Contract of the C	1 movement	200	WOVEITHERIL	103	Movement	LOS	Movement	LOS	Movement	LOS	Movemen	t LO
ſ		1		1		EBL EBTR	F D					EBL	D	EBLTTR	C	EBLTTR	D	EBLTTR	P	EBLTTR		100/500					
EBLTR	A	EBLTR	F	EBLT	С	-D///		EBLT	^	l _{co} ,	_	EBTR	D	1		E	ō (J	FOLLIK	В	EBLTTR	В	EBLTTR	С	EBLTTR	С
l		1		EBTR		WBLT	C	EBTR	D ND	EBL EBTR	F	f	_			l .				1		1		l		f	
	_	d.		WBLT	В	WBTR	ND .	WBL	F	EBIR	D	WBL	F	WBLTTR	В	WBLTTR	С	WBLTTR	E	WBLTTR	E	WBLTTR	F	IA/D/ TTD	_	WBLTTR	С
WBLTR	В	WBLTR	F	WBTR	ND	l		WTR	В	WBLT	В	WBT WBR	A							11021,11	-	INDELLIK.	<i>-</i>	WBLTTR	F		
		1						Z	_	WBTR	ь	WBR	A	AIO!	_	l				l		1					
NBLTR	F	NBLTR	_	NBL		NBL	D	NBL	F	NBL	D	NBL	D	NBL NBLT	C	NBL	Ε	NBL	С	NBL	₿	NBL	В	NBL	D	NBL	_
1	′	INDLIK	F	NBLT		NBLT		NBTR	C	NBLT	D	NBT	D	NBRR		NBT	D	NBT	D	NBT	В	NBT	Ā	NBT	D	NBLT	D
SBL	F	SBL	-	NBRR		NBR	Α	NBR	A	NBR	Ā	NBR	A	NOKK	Α	NBR	A	NBR	Α	NBR	Α	NBR	Α	NBR	Ā	NBR	C
	•	ا	-	SBLL SBTR		SBL	E	SBL	D	SBL	E	8	^	SBLL	0	SBL	E	001	_	l				ı		1	·
SBTR	F	SBTR	A	SBR		SBTR SBR		SBLT	D	SBTR	A	SBL	F	SBTR	Ä	SBTR	Ā	SBL SBTR	<i>F</i>	SBL	F	SBL	F	SBL	F	SBLL	D
Intersection	7. 法经上的	S CONTRACTOR OF THE PARTY OF TH	F	THE PARTY AND PROPERTY.	A	SBR	A	SBR	A			SBTR	Α	SBR	Ä	OBIA	^	SDIK	В	SBTR	Α	SBTR	Α	SBTR	A	SBTR	Ç
			Route 2	14/Southbou	nd Ramn		C		Đ	1000	C		D	CONTRACT OF	B		C	SIGNESS STATES	D	to realize the same	D		_				
					I I	1000	_											the second second second second		Land Control	<i>D</i>	201001201	F	特別的學習	F	A STATE OF THE PARTY OF THE PAR	G
		ł .		EBTT	ND .	EBT	ND	EBTT	ND	EBT	•	EBT		EBTT		EBTTR	С	EBTTR	D	EBTTR	C	EBTTR	В	FOTTO	_		
EBTR	ND	EBTR	ND	EBR			ND		ND	EBR	D B	EBR	A	EBR	В	5-						EBIIK	В	EBTTR	B	EBTTR	С
WBLT	F		_ 5	WBLT	C	WBLT		WBL		WBLT		WBL	. 1			WBLTT	В	WBLTT	С	WBLTT	В	WBLTT	В	WBLTT	В	IA/D/	
VVDLI	_	WBLT	F	WBT		WBT				WBT		WBT	B B	WBLTT	В								-	VVDE / /	В	WBL WBT	A B
SBLTR	F	SBLTR	_	SBL		SBL		SBL	F	SBL	D	,	- 1	SBL	ا م		<u> </u>		С		D	SBL	D	SBL	D	SBL	D
		SBLIK	-	SBLTR SBR				SBL	F	SBLR	_	SBLT		SBLTR	D _C	SBR	В	SBR	В	SBR	В	SBR	В	SBR		SBR	D
Intersection	0101111	STATE OF THE PARTY	Management .	SBR	C	SBR		SBR		SBR	A			SBR	ĕΙ		- 1	8				1	- 1	n	-		-
		- Committee of the Comm	Route 21	4/Northbour	nd Roma					经过多种地区	C		B		C		В	COLUMN TO SERVICE DE LA COLUMN	C						1000		
EBL .	D	EBL		EBLT		EBL,	0 1	COLT.				The state							Capal	CONTRACTOR OF THE PARTY OF THE	В		8		В		Θ
EBT	В	EBT		EBT	B		B C	EBLT EBT	В					EBLTT	A I	EBLTT	В	EBLTT	С	EBLTT	2	FO: 27					
		1	- 1		- J	-0,	٠ ا ^١	CB /	- 1	COT		EBT	୍ଷା		- 1		- 1			LDLII	В	EBLTT	В	EBLTT		EBL	D
WBTR	F	WBTR	F	WBT	B V	N BT	D	WBTR	F	EBT	A	14.50	_ 1	¥		WBTT	D	WBTT	E	WBTT	ا م	WBTT	ا م	14/DTT		EBT	Α
NBLT	F			WBT		V BTR				WBTT					B	WBR	В [c	[2]	εl	WBR		WBTT WBR	D B	WBTT	_
VBC (VBR		NBLT NBR			A		- 1				Ă	VOR	4 Մ	NBR	^A [- 1				- 0		- 1	VV DIX	_	WBR	C
·	-	NOK				VBL ,		VBL ,				NBL	e la	VBL					D		D	NBL	D	NBL	D	VVD/	U
	1				C A	IBLTR .			в ј	NBTR			ľ		č ľ	VDK	В	NBR	C	NBR .	В	NBR		NBR		NBLL	С
ntersection	F	THE REAL PROPERTY.	o Francisco		Billian II	- Committee of the land of the		VBR I	В						B I						- 1		- 1			NBR	D
	1	Rou	te 214/Eli	nsdale Shop		fro	D			5	B				B		C		D		0						cal yetti
BL.	E	EBL	E I	EBLT			D E	DI .	m .								- Section 2				Cassa		C		C	6, 1, 2, 7, 5	C
BT	В	ET		EBT		_		BL I			c l	EBT , EBL ,		BLTT	B [BLTT	B I	EBLTT	В	EBLTT	вТ	EDI TT	5 1				
· OT	_ 1	2			1		- ²	ر ہیں۔	۳ J	≣BT ,			E 1.		- 1				_	EDEII I	9	EBLTT	B [EBLTT	В	EBL	D
VBT VBR		WBT			с и	/BT [- I		 1.	VBTT I		NBT (VBTTR I	ן ס	NBTTR .	D [WBTTR (, I	WBTTR	_D	WBTTR		EBT	A
vBR BL		WBR			в ј и	/BTR	-	VBTR F				NBR [⁵ <i>ν</i>	VBR (۱ ۲				- 1		- 1		ן י	WOIIK		WBTT	C
BR		SBL SBR	E S			BL [) [s	BLL E			- 1	SBL E	. .	DII .	, I.				- 1				- 1		ł	WBR	D
fersaction		SDIT		BBRR /		BRR A		BR A		BRR	4 3	SBR A		BLL (BRR /				SBLL (SBLL (o	SBLL	c l	SBLL	c l	SBLL	D
	Name and Address of the Owner, where	Ed at White State	D	CONTRACTOR OF THE SAME	3			E	1 TO 1		3			DAK		BR /		_		SBR A	4 .					SBR	В
							100		_			of the owner of the last	continued of	STORY SHADOWS	AND STREET, ST	THE STREET	8	SWITTER STREET	© I	THE REAL PROPERTY.		The Part of the Pa	0				

Notes:

- Options applied to 20 year horizon traffic volumes (2022) including additional developments.
- PM Peak hour

G:/1199-1/misc/AnalysisOfOptions.xls

The main area of concern in the study area is the limited distance between the Northbound Ramp terminal and the Elmsdale Shopping Centre intersections (approximately 80 m). The approximately 80 m distance does not provide adequate storage for vehicles, resulting in traffic queuing on the Northbound Ramp, on the Highway 102 overpass structure and on the east side of the Elmsdale Shopping Centre intersection. This limited distance will be the key factor in the selection of the appropriate signal timing, phasing and coordination.

In conjunction with the improvements, it is considered desirable to reduce the maximum posted speed limit from 50/70 km/h to 50 km/h throughout the study area. The 50 km/h speed zone would extend approximately 300 m west of the Superstore entrance. This reduction in speed would reduce the sight distance requirements and improve traffic safety in the area.

4.0 ACCESS MANAGEMENT PLAN

TAC provides the following general guidelines regarding access to an urban collector, which is the classification for Route 214 in the study area (outside the study area, Route 214 is considered rural):

- if a development is bordered by two roads of different classification, access should be to the lower classification (i.e. optometrist office at the corner of Route 214 and Park Rd. should have access via Park Rd.)
- the minimum clear distance between a major intersection and an access is 55 m
- based on an average running speed of 55 km/h, a cycle length of 80 s, and having ideal traffic progression the recommended signalized intersection spacing is 600 m
- attempts should be made to remove all redundant driveways and entrances.

Route 214 throughout the study area is quite congested, with closely spaced intersections and significant turning movement volumes. This could lead to safety concerns. It is highly desirable that access be restricted on Route 214 between the Elmsdale Shopping Centre Driveway and the Superstore/Park Road driveways. It is considered that this area should be designated as controlled access.

For the driveways (one commercial, three residential, and one car pool lot) on the south side of Route 214 west of Highway 102 to Park Road, it is recommended that a service road be considered to provide access to these properties. The service road would be parallel and south of Route 214 with a connection to Park Road (See Figure 4.1). Switching the access to Park Road should be encouraged, perhaps by making it a condition of providing municipal water and sewer services and/or a change in property use. Otherwise the properties should be zoned as residential to minimize the traffic volumes at the driveways. Access should not be provided to Route 214 and the service road. The access to the car pool parking lot should be relocated to the service road.

No new access driveways or intersections should be permitted between the Elmsdale Shopping Centre and the Superstore/Park Road Intersection. Where possible, existing driveways should be consolidated. No driveways should be permitted within 30 m of a signalized intersection. Driveways for commercial developments should have a minimum clear throat distance of 8 m. The

intent would be to implement the TAC Guidelines as opportunities arise and to restrict further congestion along Route 214.

A substantial portion of Route 214 in the study area and further west has gravel shoulders and ditches for drainage. It is recommended that Route 214 in the study area be upgraded to a higher classification, with curbs and sidewalks. This would discourage roadside vendors, parking on the shoulder of the road or other obstructions and u-turns. Until development warrants sidewalks on both sides, the sidewalk could be placed on one side only.

Driveways with direct access to Route 214 should be required to have a minimum 160 m sight distance for a design speed along Route 214 of 60 km/h (i.e. posted speed limit of 50 km/h).

Dedicated turning lanes should be provided on Route 214 for access to side streets and driveways as warranted by new development.

Developments should be planned to provide controlled pedestrian access and direct pedestrians to intended crossing locations. Sidewalks should be considered on development sides of Route 214, i.e. along the north side of Route 214 in the short term (already developed) and on the south side of Route 214 if development occurs.

For the property between McDonald's and the Elmsdale Shopping Centre, the access should be provided via one of the adjacent properties if this can be imposed. Alternatively the zoning and use of this property should be restricted to residential so that the driveway volume remains low.

The access management plan should be implemented as opportunities arise, possibly through servicing requests, zone change requests, development agreement applications, etc. TPW and the Municipality should coordinate implementation of the plan.

5.0 FUNCTIONAL DESIGN

5.1 Preferred Improvements

Based on the LOS results shown in Section 3.3, after 20 years of background growth and the full proposed development (see Section 2.2), it appears that improvement Option 14 is the only option that provides an acceptable LOS (i.e. LOS D or better) for all movements in the study area.

Option 14 includes the following (see SK-1199-1-1 Functional Plan):

- signalization of the three unsignalized intersections, all coordinated,
- signal phasing: westbound and southbound left-turn protected and the remainder permitted,
- widening of Route 214 to four lanes (two in each direction) including widening of the overpass structure, and
- widening/improvements to the Superstore driveway, the Elmsdale Shopping Centre driveway, the Business Park entrance and both ramp terminals.

Other suggested improvements include the following:

- Curb on both sides of Route 214 through the study area.
- Sidewalk on both sides of Route 214. It may be practical to construct one sidewalk on the north side and defer construction of the south sidewalk until pedestrian traffic warrants it.
- Extension of the 50 km/h maximum posted speed limit to approximately 300 m west of the Route 214/Superstore/Park Rd. intersection.

The improvements have been analysed in an effort to correlate them with background traffic growth and the phasing of the developments in the upgrading strategy plan. This is discussed further in Section 5.2.

The following summarizes the upgrading strategy with the timing of each item and the estimated associated cost including 15% contingency and HST (Section 6.0 has a further breakdown of costs):

Year 2003:

- Signalize three additional intersections (four study intersections would be signalized) and coordinate signal timing and phasing. The signals should be installed with a provision for widening Route 214 in the future.
- Add channelized right-turn lane at the top of the Southbound Ramp with a raised median island.
- Add a 30 m right turn storage lane for eastbound Route 214 traffic at the Southbound Ramp.
- Extend maximum posted speed limit of 50 km/h approximately 300 m west of the Superstore driveway.
- Approximate order of magnitude cost is \$700,000.

Year 2007:

- Assuming proposed additional development is more than 25% but less than 50 % underway (i.e. 40 to 85 acre business park development, 35,000 to 75,000 sq. ft. Superstore expansion, and 25,000 to 50,000 sq.ft. Elmsdale Shopping Centre expansion), Route 214 should be widened to four lanes with two lanes in each direction. All widening should take place towards the north.
- The existing overpass structure should be adjusted to accommodate three lanes at this time with 3.2 m lanes, 0.5 m offsets and a 1.5 m sidewalk.
- Install curbs on both sides of Route 214.
- Install Sidewalk on the north side of Route 214.
- Install storm drainage system prior to widening Route 214 (i.e. catchbasins, manholes and leads).
- Approximate order of magnitude cost is \$800,000.

Year 2012:

- Assuming the proposed additional development exceeds 50% (see above), the overpass structure
 will require another adjacent one-lane structure with a sidewalk, all on the north side of the
 existing overpass (See SK-1199-1-1).
- Widen the Superstore Driveway to accommodate two left-turn lanes.

- Widen Park Road to accommodate two left-turn lanes (with one shared through lane) and a channelized right-turn slip lane separated by a new raised median island.
- Widen the Northbound Ramp to accommodate two left-turn lanes and add a raised concrete median island.
- Widen the Elmsdale Shopping Centre driveway to accommodate two left-turn lanes and separate slip lanes with raised concrete median islands.
- Add right-turn slip lane between Elmsdale Shopping Centre driveway and the Northbound onramp for westbound Route 214 traffic.
- Signal timing and phasing should be reviewed and appropriate adjustments may be required to accommodate additional traffic volumes.
- Approximate order of magnitude cost is \$1,700,000.

Year 2017:

- Assuming development has taken place on the south side of Route 214, sidewalks should be considered along the length of the study area.
- Approximate order of magnitude cost is \$100,000.

Year 2022:

- Signal timing and phasing should be reviewed and appropriate adjustments may be required to accommodate additional traffic volumes.
- Approximate order of magnitude cost is \$20,000.

The figure on the following page illustrates the correlation between Background growth and Development growth, with the study intersections signalized. The lines indicate the points at which two and three lanes would no longer function to serve the traffic volumes at the corresponding levels of growth and development.

The required number of lanes along Route 214 throughout the study area is highly dependent on the proportion of the proposed additional development that has taken place. The above upgrading strategy plan phasing may have to be altered accordingly, depending on the status of the additional developments at that time. The Piercey's Building Supply Store, currently being added to the Elmsdale Shopping Centre accounts for just under 10% of the proposed additional developments.

The following criteria (Table 5.1) was taken from the TAC Geometric Design Guide for Canadian Roads and was used as the basis for the functional design:

TABLE 5.1 - FUNCTIONAL DESIGN CRITERIA

Item	TAC Guidelines	Functional Design Criteria
Border with Sidewalk	0.3 m - 1.0 m	0.3 m
Border without Sidewalk	0.3 m - 3.0 m	n/a
Sidewalk with Boulevard	1.5 m - 1.8 m	1.5 m
Sidewalk without Boulevard	2.0 m - 3.0 m	n/a
Boulevard	1.5 m - 3.0 m	1.2 m
Lane Widths	3.5 m - 3.7 m	3.5 m
Maximum Lane Width Reduction	0.2 m	n/a
Left-turn Lanes	3.3 m	3.3 m
Two-way Service Road Lane Width	3.3 m per direction	not shown on plan
Shoulder Width (if no curb & gutter)	2.5 m	n/a
Minimum Offset	0.3 m	0.5 m

The Functional design is generally based on the minimum TAC guidelines in order to maximize the use of the existing right-of-way, hence minimizing the need for additional land acquisition. The Functional Plan (SK-1199-1-1) illustrates the magnitude of required land acquisition with the superimposition of the required right-of-way over the existing right-of-way. The widening was assumed to take place to the north (Truro side) of Route 214 due to limiting constraints found on the south side (i.e. cemetery and more properties).

Streetscaping, such as landscaping, signage, lighting, landscaped medians and boulevards, etc. is becoming a trend in community development and establishing town identity. These items improve aesthetics of the area, making it a more pedestrian-vehicle friendly environment. One of the main constraints involved with this in the Route 214/Highway 102 interchange area would be the available right-of-way space. The proposed cross-sections shown on the Functional Plan (SK-1199-1-1) would have to be increased between three and five metres in order to facilitate medians and boulevards large enough to accommodate landscaping. Streetscaping was not incorporated into the functional design.

6.0 COST ESTIMATE

An order of magnitude cost estimate was prepared for the preferred option, Improvement Option 14 as described in Section 5.1 and as shown on the Functional Plan (see SK-1199-1-1). The cost estimate was divided into three sections as follows:

- Area 1 50 m west of Superstore/Park Rd. to Southbound Ramp Terminal
- Area 2 Southbound Ramp Terminal to Northbound Ramp Terminal
- Area 3 Northbound Ramp Terminal to 50 m east of Elmsdale Shopping Centre
 Driveway

The cost estimates are on the basis of a road structure of 150 mm of asphalt and 650 mm of gravel. An allowance of 0.3 m behind the back of the sidewalk has been included for slopes to existing grade and landscaping with topsoil and sod. It includes modifications to the existing signals and provision of three new sets of signals. The cost estimate excludes land acquisition and water, sanitary and other underground services. The cost estimate also excludes any allowance for streetscaping. An allowance has been included in Areas 1, 2 and 3 for a storm sewer system, which includes a 450 mm diameter main, manholes at 300 m and catchbasins at 150 m.

The order of magnitude cost estimate to improve Area 1 includes removals, gravels and asphalt, curb, gutter and sidewalk on both sides of Route 214, stormwater drainage system including manholes and catchbasins, topsoil and sod, pavement markings and new traffic signals at the Superstore/Park Rd. intersection.

The cost estimate for Area 2 includes a proposed one lane structure plus sidewalk north of the existing structure.

The order of magnitude cost estimate is summarized in the following Table 6.1:

TABLE 6.1 - ORDER OF MAGNITUDE COST ESTIMATE

		Price	
Item	Area 1	Area 2	Area 3
Excavation/Removals	\$30,000	\$30,000	\$10,000
Stormwater Drainage System	\$40,000	\$30,000	\$30,000
Gravel	\$60,000	\$30,000	\$20,000
Asphalt	\$80,000	\$40,000	\$20,000
Curb & Gutter	\$60,000	\$25,000	\$30,000
Sidewalk	\$70,000	\$50,000	\$30,000
Traffic Signals	\$140,000	\$280,000	n/a
Traffic Signal Modifications	n/a	n/a	\$50,000
Topsoil & Sod	\$15,000	\$10,000	\$5,000
Overpass Structure	n/a	\$1,300,000	n/a
Pavement Markings & Signage	\$5,000	\$5,000	\$5,000
Sub-total 1	\$500,000	\$1,800,000	\$200,000
Contingency (± 15%)	\$80,000	\$270,000	\$30,000
Sub-total 2	\$580,000	\$2,070,000	\$230,000
Subtotal (Area 1, 2 and 3)			\$2,880,000
15% HST			\$440,000
Total			\$3,320,000

7.0 CONCLUSIONS

The following conclusions are based on trip generation, horizon year projection of traffic volumes, signal warrant analyses, and LOS analyses:

- 1. Background traffic growth is expected to take place at a rate of about 2% per annum over the next 20 years, i.e. a 50% increase.
- 2. An estimated 2,500 additional trip ends (excluding reduction for pass-by trips) would be generated during the weekday afternoon peak hour by the expansion of the Superstore (55,000 to 208,000 sq. ft.), East Hants Business Park (28 to 195 acres), and the Elmsdale Shopping Centre expansion (100,000 to 203,000 sq. ft.). These expansions are planned to take place over the next 20 years, but tentative dates have not been provided.
- 3. The right-turn entrance only to the Superstore has been accepted and is planned to be built in the next year by the developer. It has been included for the analyses, beyond 2002 or with the introduction of further development.
- 4. From the signal warrant analyses it was found that:
 - Traffic signals are warranted at the Northbound Ramp with existing (2002) traffic volumes.
 - Traffic signals will be warranted at the three study intersections after 20 years of background traffic growth (2022) with the proposed additional development.
 - Traffic signals would not be warranted at the Southbound Ramp intersection after 20 years of background traffic growth (2022) with the proposed additional development if the Superstore/Park Rd. and the Northbound Ramp intersections are signalized.
- 5. From the LOS analyses results, for the existing configuration with no additional signalization of intersections, it was found that:

- Left turn movements exiting the Superstore, the Southbound Ramp and the Northbound Ramp have an LOS F with existing (2002) traffic volumes.
 Improvements should be implemented for the left turn movements.
- Queue lengths increase for the left turns after 20 years of background traffic growth
 (2022) without any additional developments.
- Most of the LOS results will experience degradation to D and F, with delays and queue lengths increasing to an unacceptable level (i.e. extreme congestion) after 20 years of background traffic growth (2022) with additional developments. Significant improvements will be required.
- 6. Signalization of the four study intersections will improve the LOS of all four intersections to an acceptable level for the existing 2002 traffic volumes. Physical improvements are also considered to be warranted at the Southbound Ramp at the time of signalization. These improvements include channelized right-turn lane at the top of the ramp with a raised median island and a 30 m right-turn storage lane for Route 214 eastbound traffic. All intersections in the study area, with the exception of the Southbound Ramp terminal, operate at an acceptable LOS with horizon (2022) traffic volumes excluding additional developments, with signalization only.
- 7. The LOS for most of the traffic movements at the four study intersections is deteriorated to an unacceptable level in 20 years with additional development, even with signalization of the four intersections. Physical improvements are required.
- 8. As soon as 25% of the proposed additional developments are reached, Route 214 should be upgraded to four lanes, with the overpass structure adjusted to three lanes, sidewalks introduced on the north side and curbs on both sides of Route 214. When 50% of the proposed additional development is accomplished, the overpass structure should be widened to four lanes with sidewalks on each side. Depending on developments along the south side of Route 214, it may be feasible to add sidewalks to both sides of the road. Traffic signal timing and phasing should be reviewed and adjusted accordingly during times that traffic volumes increase.

- 9. Improvement Option 14 (four lanes on Route 214 plus signalization of intersections and additional turning lanes) results in acceptable LOS (LOS D or better) for all traffic movements with horizon (2022) traffic volumes including additional development.
- 10. The intersections are closely spaced resulting in a high volume of turn movements in a relatively short length, and a lack of length for provision of turning movement storage. The intersection spacing is restrictive and it would have been preferable for the distance between intersections to be greater, i.e. 200 m or more.
- 11. Commercial and residential driveways are close to the Highway 102 Ramps and this is contributing to the issues identified in Item 8 above. Access control should be implemented to restrict driveways or intersections within the study area. Access for properties along the south side of Route 214 could be provided via a new service road, parallel to Route 214 on the south side, intersecting with Park Road. Relocation of the access should be encouraged. Access should not be permitted to Route 214 and the service road.
- 12. Route 214 is curbed at the east end of the study area and has gravel shoulders and ditches from the Elmsdale Shopping Centre west, i.e. more rural type road. As the area has become more commercialized there has been significant traffic growth and turning movements. It is considered highly desirable to provide more visual queues and guidance for drivers by provision of curbs. This will also restrict the potential for vehicles using the shoulders of Route 214.
- 13. The 50 km/h maximum posted speed limit zone should be extended to approximately 300 m west of the Route 214/Superstore/Park Rd. intersection.
- 14. The ramp alignments at Route 214 results in a wide intersection, which is not desirable for pedestrian crossings. It would be preferable for the ramps to intersect Route 214 at 90 degrees.
- 15. Further development will increase traffic volumes and congestion on Route 214 to an undesirable level. Developments should be closely monitored and regulated and corresponding road network improvements should be implemented at the appropriate time.

16. Streetscaping may be considered as a part of the improvements, however the limiting factor is the available right-of-way width along Route 214. Streetscaping will require from 3 to 5 additional meters of land acquisition and potentially a wider new overpass structure.

8.0 RECOMMENDATIONS

The following recommendations are provided based on the study. See Section 5.2 for the suggested timing and phasing of the improvements.

- 1. Traffic signals should be installed for the three unsignalized intersections in the study area in 2003. They should be done at the same time or in the following sequence:
 - Route 214/Northbound Ramp
 - Route 214/Superstore/Park Rd.
 - Route 214/Southbound Ramp

The phasing and timing of the existing traffic signals at the Elmsdale Shopping Centre should be adjusted to be coordinated with new traffic signals in the study area. Signal timing and phasing should be reviewed and adjusted accordingly at times when there is a significant traffic pattern changes, i.e. new developments. Priority should be given to ensure that traffic does not congest on the north and southbound ramps back onto Highway 102 and that the flow of the Route 214 traffic takes precedence over the flow of traffic entering and exiting developments in the study area.

- 2. The following physical changes should be implemented at the Route 214/Southbound Ramp intersection in 2003:
 - Introduce designated turn lanes for southbound movements at Route 214 (separate right and left turn lanes).
 - Install a right turn storage lane, 30 m long for eastbound traffic turning right onto the Southbound Ramp.
- 3. Extend maximum posted speed limit of 50 km/h (i.e. reduce posted speed from 70 km/h) to approximately 300 m west of the Superstore driveway in 2003. The speed limit reduction would

decrease the turning sight distance requirements by approximately 90 m and should improve safety.

- 4. Route 214 should be widened to four lanes with a three lane overpass (i.e. modified existing structure). This should be carried out after the business park develops by 40 acres, the Superstore undergoes 35,000 sq.ft. of expansion and the Elmsdale Shopping Centre undergoes 25,000 sq.ft. of expansion (i.e. 600 additional trip ends).
- 5. Sidewalks along the north side of Route 214 should be installed throughout the study area at the same time as Route 214 widening to four lanes. Sidewalks on the south side of Route 214 should be constructed if pedestrian traffic volumes warrant it.
- 6. Curb and gutter with a piped stormwater drainage system should be installed along Route 214 throughout the study area at the time of widening to four lanes. This will assist in regulating traffic speeds, u-turning, and side-of-the-road activity.
- 7. Route 214 overpass structure should be upgraded to four lanes (see Dwg. No. SK-1199-1-1, Functional Plan) after the business park develops approximately 85 acres, the Superstore expands by 75,000 sq. ft. and the Elmsdale Shopping Centre expands by 50,000 sq.ft. (i.e. 1200 additional trip ends). The existing overpass structure should be sufficient to accommodate a sidewalk and three lanes and the new structure should accommodate the fourth lane and a sidewalk.
- 8. Park Road, the Superstore driveway, the Northbound Ramp terminal and the Elmsdale Shopping Centre driveway should be widened at the same time as the structure is widened to four lanes to accommodate two left-turn lanes and channelized right-turn lanes with raised concrete channelization islands (see Dwg. No. SK-1199-1-1).
- 9. Add a westbound right-turn slip lane for the Northbound Highway 102 on-ramp.
- 10. Install a sidewalk along the south side of Route 214 as pedestrian traffic warrants it.

- 11. Traffic signal timing and phasing at all intersections in the study area should be reviewed and adjusted accordingly to accommodate any increase in traffic volumes.
- 12. A service road is recommended, beginning at Park Road and extending east, parallel to Route 214 to provide access to properties along the south side of Route 214 between the Southbound Ramp and the Superstore Entrance. Route 214 between the Southbound Ramp and the Superstore entrance should be designated controlled access.
- 13. When widening Route 214 to four lanes, land acquisition will be required on the north side of Route 214 from the Southbound Ramp to just west of the Superstore Entrance, from the Northbound Ramp to just east of the Elmsdale Shopping Centre Entrance. Additional land acquisition will also e required on the east side of Park Road for the widening of the entrance to the East Hants Business Park. This should be considered in the short term to avoid any potential delays when planning the Route 214 upgrade.

APPENDIX A

TPW REQUEST FOR PROPOSALS
HIGHWAY 102 - ROUTE 214 INTERCHANGE AREA
TRANSPORTATION STUDY

Transportation and Public Works Highway Engineering Services Highway Planning and Design

Request For proposals for Highway 102 - Route 214 Interchange Area Transportation Study

Traffic Engineering Services Standing Offer Tender # 60101568

1.0 BACKGROUND

Highway 102 is a primary provincial highway connecting Halifax and Truro. Route 214 is a collector highway extending from Trunk 2 in Elmsdale westerly to Trunk 14. Connection between the two is by means of a typical diamond interchange.

The area surrounding the interchange is the suburban community of Elmsdale which has seen significant residential and commercial growth over the last two decades. This growth has resulted in traffic pressures on the interchange and Route 214 from the interchange to Trunk 2. In 1998, in response to existing and anticipated future traffic challenges, the Municipality of East Hants commissioned a study to determine the required geometric improvements and access management principles necessary to safely and efficiently accommodate traffic on Route 214 between Trunk 2 and Highway 102.

Development is continuing and expanding on Route 214 west of the interchange. Presently there are two large commercial developments on each side of the interchange, both with expansion plans, and an industrial park on the west side of Highway 102 which has moderate to high growth potential. Although the developers have undertaken traffic impact studies to determine the effects of each development individually, the Department recognizes the necessity of performing an area wide study to understand the cumulative impacts of all developments in the study area and to identify the necessary future infrastructure improvements and access management measures that will enable development and protect the safe and efficient operation of the interchange and Route 214.

2.0 OBJECTIVES

The primary objectives of this study are to:

- Using traffic data obtained from the individual site traffic impact studies for the area, augmented with additional data collection as required, perform analysis as required to evaluate the traffic impacts to the interchange area as a whole, through the study horizon.
- Identify functional requirements and infrastructure improvements required to accommodate the projected traffic demands including cost estimates and functional plans where applicable. Determine the triggers for infrastructure upgrades and prepare a phasing plan that corresponds to traffic volumes and time horizons.
- Determine an appropriate access management plan for the section of Route 214 within the study area. This plan will identify the access measures that will accommodate existing access and facilitate future development while identifying the necessary limits required to ensure safe and efficient interchange operation through the study horizon.

3.0 STUDY AREA

The study is to be focussed on the Highway 102/Route 214 interchange area as shown on the attached figure. It will assess the interchange configuration, including the Route 214 approaches (Elmsdale Shopping Centre entrance to the Park Road/Superstore entrance), for safety and capacity through a twenty year time horizon.

4.0 DUTIES OF THE CONSULTANT

- Meet with the project management team as per the schedule specified in Section 7.0 (Meetings and Reports).
- Familiarization with the study area including, but not necessarily limited to, existing highway infrastructure, existing development, zoning, land ownership, approved and proposed developments, terrain and soil conditions.
- Review all past transportation, traffic impact and land use studies within the study area.
- Collect supplementary data as required to perform the required analysis and to develop growth projections and estimates of future traffic volumes for the 20 year horizon.
- Assuming no improvements to the existing highway network within the study area, identify existing and estimated future levels of service and safety on the existing roadway network. Areas with moderate to severe deficiencies, existing or projected, should be highlighted.
- Identify cost effective road network upgrades (geometric improvements, new alignments, traffic control measures, etc.) to eliminate existing and predicted future deficiencies within the study area.
- Prepare an access management plan for the study area.
- Develope a recommended upgrading strategy for providing acceptable levels of service within the study area. The upgrading strategy shall include phasing and time frames for implementation and shall be presented to the project management team for approval.
- After acceptance of the upgrading strategy by the project management team, prepare functional designs where applicable and finalize cost estimates for the proposed improvements. The functional designs will adhere to TPW design standards and specs.
- Prepare a draft final report summarizing all work completed and present to the project management team.

Finalize Report

5.0 DUTIES OF TPW

- Meet with the Consultant on an arranged schedule.
- Provide the Consultant with any available documentation (reports, studies, plans, etc.)
 required to complete the project.

6.0 GUIDANCE

A project management team will administer the technical and analytical work of the Consultant. The team will consist of representatives from TPW and possibly the Municipality of East Hants. The Consultant will report to the project management team chair, who will be responsible for overall administration of the study.

Acceptance and approval of the work will take place after the project management team has been satisfied that the requirements, as specified in the contract, have been met.

7.0 MEETINGS AND REPORTS

The Consultant shall meet with the project management team for the project initiation, the presentation of upgrading strategies, and other meetings as required during the duration of the project. All meetings will be held in Halifax, Nova Scotia. The Consultant shall meet with the project management team within one week of notification of award of contract. The initial meeting with the Consultant will be to finalize the study requirements, data requirements and the methodologies to be used.

The following reports shall be required.

Five (5) copies of a draft final report for the Study must be submitted for comment and possible amendments before the final version is submitted. The Consultant must be prepared to submit a second draft if requested.

Twenty (20) bound copies and one unbound copy of the final report. The Consultant shall also have a copy on hand should additional copies be required at short notice. The Consultant shall provide one electronic copy of the final report on CD compatible with WordPerfect 6.1 including all plans (compatible with AutoCad 2000), tables, diagrams, figures and pictures. All copies of the draft and final report shall be on letter size paper and appropriately titled. The final report shall include an executive summary and a list of references. All reports shall contain copies of supporting plans and figures. The Terms of Reference shall be attached as an appendix to the final report.

8.0 STUDY SCHEDULE

The Consultant shall meet with the project management team within one week of notification of award of contract. The study shall be completed and the required copies of the final report presented within 2 Months of award of contract.

9.0 PROPOSAL REQUIREMENTS

Failure to provide information outlined in this section may result in disqualification.

Three (3) copies of your proposal (fax copies are not acceptable) are to be delivered by 10:00 am local time, *Wednesday*, *May 29*, 2002 to the 4th floor receptionist at Purdy's Wharf Tower II, 1969 Upper Water Street.

Proposals and their envelopes should be clearly marked with the name and address of the proponent and the project or program title. Late proposals will not be accepted and will be returned to the proponent. Proponents are solely responsible for their own expenses in preparing, delivering or presenting a proposal.

To facilitate efficient review of the proposals, proponents are requested to use the following format. The proposal shall be organized into four chapters and such chapters limited where indicated.

1. Introduction

This chapter shall include, but not necessarily be limited to, background information, a description of the study area, and understanding of the project and its objectives, including potential key issues.

2. Qualifications

This chapter shall include, but not necessarily be limited to:

- A summary of relevant company experience within the past 10 years including dates projects were worked on. This shall be a maximum of three pages.
- A summary of project team member experience in areas related to these terms of reference. This summary shall be a maximum of one page per team member, focusing on the team member's relevant experience. The role of each team member in the study shall be clearly explained.

3. Methodology

This chapter shall include, but not necessarily be limited to:

- A list of all information and data sources available to the Consultant and expected to be used in the Study.
- A detailed work plan, identifying planned field work, and including intended approach, methodology and schedule for the study.
- A draft table of contents for the report.
- A concordance table (or similar) linking proposal to this RFP.

4. Project Management

This chapter shall include, but not necessarily be limited to:

- A discussion of quality assurance/quality control, cost control, scheduling, insurance, and safety certification. Copies of certificates are not required as part of the proposal, but shall be provided by the successful Consultant upon award of the contract.
- Number of person-days for each team member by task assigned to the project. For consistency, the basis of remuneration will be per 8 hour day for all team members.

One copy of the cost proposal shall be provided, to be separately sealed in an envelope, including labour costs, related expenses, printing costs and professional services obtained outside of the firm. Prices quoted are to be in Canadian dollars and exclusive of federal and provincial taxes. Expenses shall not exceed the Nova Scotia provincial rates (\$0.34/km, breakfast \$6.00, lunch \$7.00, supper \$13.50, incidentals \$4.00 per night)

By submitting a proposal, the proponent warrants that all components required to deliver the services requested have been identified in the proposal or will be provided by the Consultant at no additional charge. The technical proposal must be signed by the person(s) authorized to sign on behalf of the proponent and to bind the proponent to statements made in response to this Request for Proposal.

10.0 LIABILITY FOR ERRORS

While considerable effort to ensure the accuracy of the information in this Request for Proposal has been made, the information contained in this Request for Proposal is supplied solely as a guideline to Proponents. The information is not guaranteed or warranted, nor is it necessarily comprehensive or exhaustive.

11.0 REQUEST FOR PROPOSAL AMENDMENTS

All proponents will be notified regarding any changes made to the Request for Proposal or any appendices or any change in the closing date or time. It is the responsibility of the proponent to ensure they have received all amendments. When these changes occur within five government business days of the close of the proposal, the proposal closing date will be extended to allow for a suitable number of bid preparation days between the issuance of the change and the closing date. All amendments must accompany each proposal. Proposals that do not contain all the amendments may be immediately returned and the proponent eliminated from further consideration.

12.0 PAYMENT SCHEDULE

Payments for professional services rendered will be made monthly in arrears upon receipt of invoices detailing progress work completed, and subject to the following conditions;

- (a) Monthly payments will be issued for up to 90 % of the amount invoiced. The remaining amount will be paid upon completion of and acceptance of the work, as indicated in (b), and;
- (b) Receipts shall be provided for all expenses if requested.

13.0 EVALUATION OF PROPOSALS

Proposals shall be evaluated based on the "Government Procurement Process: Architects and Professional Services" (June 15, 1998).

All proposals will be initially assessed based on the experience and expertise of the project team. Any proposals not meeting minimum qualifications will not be evaluated further.

The criteria for evaluating proposals, based on technical and managerial merit, will be the following;

•	Experience and expertise of the consulting firm on similar proje	ects.	5 points
•	Qualification and experience of team members on similar proje	cts.	20 points
•	Understanding of project and objectives.		20 points
•	Proposed methodology and approach.		20 points
•	Quality of the proposal.		15 points

Local knowledge and content.

5 points

After meeting initial qualifications, proposals will be evaluated on the basis of their technical and managerial merit and then on the basis of price. The technical submission shall be rated as shown above, out of 85 points, and the remaining 15 points shall be allotted based on price. Only those proposals achieving an aggregate score of 68/85 (80%) or greater will have their sealed cost envelopes opened. The lowest price shall be awarded 15 points (all prices within 5% will receive the same price points). The next lowest price (beyond 5%) will receive 12 points. Points for other submissions will be assigned with 3 fewer points for each successively higher priced price proposal. But again, each time the same score will be awarded if successive prices are within 5% of the last highest price. The proposal with the highest total points will be awarded the contract. Proposals not meeting the required 68/85 will have their unopened cost envelopes returned.

Notwithstanding the technical/managerial and price scores, TPW reserves the right to reject any proposal where prices are deemed unreasonable relative to other prices bid, typically a 25% variance from the average qualified bid (excluding the bid in question).

The Department reserves the right to negotiate any or all conditions of the Consultant's proposed work plan and reject all submitted proposals. Unsuccessful proponents may request a debriefing meeting following execution of a contract with the successful proponent.

14.0 CONTRACT PROCEDURES

Notice in writing to a proponent of the acceptance of its proposal by the Province and the subsequent full execution of a written contract will constitute a contract for the goods or services, and no proponent will acquire any legal or equitable rights or privileges relative to the goods or services until the occurrence of both such events.

If a written contract cannot be negotiated within thirty (30) days of notification of the successful proponent, the Province may, at its sole discretion at any time thereafter, terminate negotiations with that proponent and either negotiate a contract with the next qualified proponent or choose to terminate the Request for Proposal process and not enter into a contract with any of the proponents.

15.0 INQUIRIES

All enquiries related to this Request for Proposal are to be directed to the following person. Information obtained from any other source is not official and may be inaccurate. Enquiries and responses may be recorded and may be distributed to all proponents at the Province's option.

Department Contact:
Michael Croft, P.Eng. (Project Management Team Chair)

Infrastructure Planning Engineer Telephone: 902-424-3548 Fax: 902-424-0571

Email: croftmi@gov.ns.ca

C:\BACKUP\wpfiles\CENTRAL\ELMSDALE\Standing Offer RFP.wpd

APPENDIX B

POPULATION GROWTH STATISTICS & PAST TRAFFIC COUNTS

The Regional Serviceable Boundary (RSB) is generally the area between Highway 102 and the Shubenacadie River within the Districts of Enfield, Elmsdale, and Lantz. This area is broken out from the Municipal and District statistical profiles, as decisions on infrastructure improvements in this area are based on expected population change which is not necessarily captured by the District totals. For example, over the last census period the population in the Districts of Enfield, Elmsdale and Lantz grew by 9.8% while the population in the RSB grew by 25%. Given that municipal water and sewer services are available in this area, it is also the most urbanized area of the Municipality and the majority of residential population growth is found here.

In fact, during the last census period, population growth in the RSB accounted for 70% of all population growth in the Municipality.

Future RSB Population Change - Number of Residents										
1996	2001					(a)				
4483	6617	8754	10428							
4483	5820	7090								
4483	5376	6269	7162							
4483	5466	6246	6854							
	1996 4483 4483 4483	1996 2001 4483 6617 4483 5820 4483 5376	1996 2001 2006 4483 6617 8754 4483 5820 7090 4483 5376 6269	1996 2001 2006 2011 4483 6617 8754 10428 4483 5820 7090 8148 4483 5376 6269 7162	1996 2001 2006 2011 2016 4483 6617 8754 10428 12090 4483 5820 7090 8148 9170 4483 5376 6269 7162 8055	1996 2001 2006 2011 2016 2021 4483 6617 8754 10428 12090 13759 4483 5820 7090 8148 9170 10150 4483 5376 6269 7162 8055 8948				

Future RSB Population Ci	(a	ctual in	crease)	_			3.
Portor Dillo- E	1996				2016	2021	10.2
Porter Dillon Forecast	24.9%		32.3%	19.1%	15.9%	13.8%	High Growt
Average of all Projections	(893)	(2134)	(2137)	(1674)	(1662)	(1669)	3.0
werage of all Projections	24.9%	29.8% _.	21.8%	14.9%	12.5%	10.7%	Moderate Growth
Change Based on Historic Trend	(093)	(1337)	(1270)	_(1058)	(1022)	(980)	
change based on historic frend	24.9%			14.2%	12.4%	11.1%	
RSB Growth as a % of HRM	(893)	(893)	\- · · · //	(893)	(893)	(893)	
Growth	24.9%	21.9%		9.7%	7.4%	5.1%	Low Growt
0.000	(893)	(983)	(780)	(608)	(510)	(379)	== 0.0

As with the forecasts for East Hants as a whole, different methods were used to provide a high, moderate and low growth scenario. As can be seen in the tables above, a fairly significant difference between the forecasts is evident, with a spread of over 6000 people by the year 2021 between the low and high growth scenarios. Again despite the difference in actual numbers, all projections show a slowing rate of population growth in the future as evidenced in the declining rates seen in the preceding tables. This is a national trend and is primarily due to a general aging of the population.

6.1 Change Based on Historic Trend

This method is quite simply an extension of historic growth in the Corridor into the future. In this case, growth from 1991 to 1996 was used to project future growth. For East Hants as a whole two census periods were used as opposed to data only being available for one period here, meaning that this trend line is somewhat less reliable, but nonetheless a valuable forecast based on recent population growth. This projection falls between Porter Dillon's forecast and the HRM based growth forecast and is close to the average (moderate growth scenario).

6.2 Change as a Percentage of HRM's Growth (Low Growth Scenario)

As mentioned previously, East Hants population change appears to track closely to change in Halifax Regional Municipality (HRM). Growth in the RSB is similarly linked to HRM growth. This is understandable as the RSB acts as a bedroom community to HRM. The RSB is, in effect, part of suburban Halifax and captures a fairly constant percentage of suburban Halifax growth. As growth changes in HRM, then so will growth change in the RSB.

Again, there are pitfalls with this method. Essentially this is a projection based on a another projection, possibly amplifying any errors contained within the first. Because this projection shows the lowest growth rate and although this forecast was based on a moderate growth scenario for HRM, the assumptions in that study seem conservative and as a result, this projection will be treated as the low growth scenario.

6.3 Porter Dillon's Forecast (High Growth Scenario)

This forecast was taken from the East Hants Infrastructure Capacity Study (Porter Dillon, 1998). This forecast is 'conservatively optimistic' because it was developed to anticipate municipal infrastructure needed to service a growing population. The study authors deliberately made high growth assumptions to ensure that the Municipality would not reach a situation where there were inadequate services to support the population in the RSB. Indeed, many of the assumptions seem quite optimistic. For example, the authors assumed 3.35 persons per household in all future development, whereas the latest census indicates that in East Hants there are 3.0 people per household. As a result of such assumptions, this forecast will be considered the high growth scenario.

6.4 Average of All Forecasts (Moderate Growth Scenario)

Averaging all three forecasts provides results close to the historic trend line. As such this forecast will be treated as a moderate growth scenario which provides the most probable outcome. In this case, the RSB population will continue to grow, albeit at a declining rate.

By 2021, in this scenario, we can expect a population of 10,150. This would be an increase of 5,667 people, or double the current population, over this 25 year period or an increase of about 227 people per year.

MUNICIPALITY OF EAST HANTS

P.O. Box 190, Shubenacadie, N.S. B0N 2H0

2025 2026 2027

2028

2029 2030

2031

	Grant Bain, I Director of P	Dp., B.E.S. lanning & Develop	ment nge/Year	% Growth
	Telephone:	(902) 758-2715	·	5.6
	Facsimile:	(902) 758-3497	.4	5.3
	-t-i-@:	-t., -1tr		5.1
	goain@munic	cipality.easthants.ns	ca	4.8
		5 000		4.6
20		5820		4.2
20		6074	254	4.0
20		6328		3.9
20		6582		3.7
20		6836		3.6
20		7090		2.9
20		7302	211.6	2.8
20		7513		2.7
20		7725		2.7
20		7936		2.6
20		8148		2.4
20		8352	204.4	2.4
20		8557		2.3
20		8761		2.3
20		8966		2.2
20		9170		2:1
20		9366	196	2.0
20		9562		2.0
20		9758		2.0
202		9954		1.9
202		10150		
202				
202				
202	24			

3 0 AUG 2002

STACY - OUR SOCIO-ELONOMIC STUDY IS ATTACHES. PART 6
OF THE STUDY IS THE RELEVANT PART IN RELATION TO GROWTH
RATES AFFECTING TRAFFIC ON ROUTE 214. RASED ON GROWTH
RATES OUTLINED IN OUR STUDY, THE ABOVE SHOWS THE
ANTICIPATED ANNUAL % GROWTH FOR THE REGIONAL SERVICED
AREA OF ENFIELD, ELMSDALE & LANTZ. THE AVERAGE ANNUAL
GROWTH OVER THIS PERIOD IS AROUND 3.2%. I WOULD
SUGGEST USING THIS FIGURE IF YOU WANT TO TAKE A
CAUTIOUS APPROACH TO POPULATION PROJECTION - THIS WILL LIKELY
PUT YOU AT THE HIGH END OF THE WINDOW.

CALL IF YOU WISH TO DISCUSS.

Rte 214-Section 010 - Tk.2 (Elmsdale) to Hwy 102 inter/c

y = 473.32x - 935502 R ² = 0.9197	Series1 Linear (Series1)	2000	
Rte 214-010		1995	YEAR
		1990	>
15000		1985	
	TQAA		

Growth is 473 Vehicles per year.

Rte 214-Section 020 - Hwy 102 Inter/c to Tk. 14

Growth is 92 Vehicles per year.

Hwy 102-Section 090 - Enfield to Elmsdale (Northbound)

Growth is 365 Vehicles per year.

Hwy 102-Section 100 - Elmsdale to Milford (Southbound)

Growth is 248 Vehicles per year.

APPENDIX C JULY 5, 2002 TRAFFIC COUNTS

di.	Elmsdale S	Shopping Ce				SHO SHO	
Time	A	В	С	D	177		JTE 214
3:30	60	53	66	74	<u>E</u>	F	Total
3:45	53	39	48	59	87	56.	396
4.00	77	53	45	200000000000000000000000000000000000000	95	58	352
4.15	7.	47		88		94	6.92
			45	8.4	116	536	444
4145	97		47	81	102	57	
5:00	58	66.		2.4	- 24	26	486
5:15	76	53·	48	76	92	65	405
Peak	293	232	46	81*	116	62	434
Peak Hour	473	232	189	377	407	285	1783
Factor	0.92	0.78	0.91	0.91	0.88	0.83	
Pedestrian	0	0	1	1	0	0	
% Trucks	1	0.5	1	5	6	2	

	South R Existing Friday, Ju	amp Term Traffic Co				G THINK WILLIAM BOCK	ROUTE 214	7. Fi
Time	A	В	С	D	E	F	G	Total
3:30	21	102	58	0	52	77	17	327
3:45	22	101	66	0	45	101	15	350
4.00	22	97	94		44	103	12	300
		125	94	0.0	72	1.7	14	7.5
4.00	1.3	109	1(8)	1	75	(9)		
4445	3.5		28	0	8.4	98		402
5:00	29	126	77	0	58	86	17	393
5:15	29	121	90	0	71	100	10	421
Peak	121	439	379	1	266	388	59	1653
Peak Hour Factor	0.87	0.88	0.92	1	0.8	0.95	0.87	1000
Pedestrians	0	0	0	0	0	0	0	
% Trucks	9	3	6	0	4	4	0	

	Morth R Existing Friday, J	Ramp Ter	Count Date		G CUTE 214	ac /		
Time	A	B	С	D	E	F	G	Total
3:30	13	0	17	119	34	21	84	288
3:45	15	0	27	96	26	24	87	275
400	11		21	106	- 16	12	101	3(15)
1 5	- 69		23		49	19	88	318
4.30	14		3.3	1016	(1)	(9)	1.9	
4.45	1		23	14(0)	40	29	9.3	57/\$0
5:00	11	0	19	131	30	24	92	307
5:15	14	-0	27	136	36	25	93	331
Peak	49	1	102	505	161	99	374	1291
Peak Hour Factor	0.82	1 =	0.78	0.85	0.92	0.78	0.93	
Pedestrians	0	0	0	0	0	0	0	
% Trucks	7	= 0	4	3	5	3	5	

													- <u>-</u>
Existin	Route 214 @ Superstore Entrance/Park Rd. Existing Traffic Count Data Friday July 5, 2002								1	SUPERSTORE	l I	PUTE 214 -D E +	
Time	A	В	С	D	E	F	G	H	Ī	Ţ	K	L	Total
3:30	14	6	62	73	42	15	15	0	2	3	24	12	268
3:45	11	2	71	57	34	12	11	1	1	1	33	7	241
4.00			56	73	4.5	18	1.9	5			44	6	298
4.15	14	2	(5.0)	7.1	77.					5	25		V
4 3 6				.3				7					2010
4.45	16			97	11						38		
5:00	9	3	65	76	61	13	21	1	2	1	*************	2	300
5:15	14	0	68	77	64	5	20	3 =		1	29	3	284
Peak	53	7	264	320	206	64	62	18	4	T T	37	3	296
Peak Hour Factor	0.83	1	0.96	0.92	0.92	0.8	0.82	0.65	0.55	9 0.45	0.83	0.79	1181
Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	
% Trucks	2	0	1	2	3	18	5	0	0	0	8	0	

APPENDIX D SIGNAL WARRANT ANALYSES

SIGNALIZATION PRIORITY POINT WORKSHEET

Uniform Traffic Control Devices for Canada - Chapter B

Intersection: Superstore Entrance/Park Rd./Route 214

PM Peak Hour - Existing

	Part	Calculation	SubTotal	Priority Points
╙	Accident Rating	From Figure B2-1	-25.0	
II	Delays and	$P_2 \times V_t \times F_e$		
1	Vehicular Stops	N. Leg (2.0 x 7.28 x 1.0)	7 1	
		S. Leg (2.0 x 1.82 x 1.0)	30.5	
		E. Leg (0.25 x 11.30 x 1.0)		42.7
_		W. Leg (2.0 x 4.75 x 1.0)	1	
Ш	Intersecting	$(V_a + P) \times (Va + P) \times F_{ow}$		
	Volumes and		1 1	
	Pedestrian	$(8.15 + 0.1) \times (4.41 + 0.1) \times 1.0$	37.2	
	Volumes			

P₂ = Qualitative index expressing effect traffic signal would have upon availability of crossing gaps,

Progression of vehicles, delay to vehicles, and the number of stops to which vehicles are subjected to.

 V_t = total annual average daily traffic volume on each individual leg, divided by 1000.

F_e = expansion factor accounting for increase in vehicular volume occurring within one year due to installation of traffic control signal.

 V_a = total annual average daily traffic volume approaching intersection, divided by 1000.

P = total annual average daily pedestrian volume crossing intersection, divided by 1000.

 F_{ow} = factor expressing increased safety, capacity and facility of movement at intersection of one-way streets due to smaller number of conflict points compared with two-way streets.

SIGNALIZATION PRIORITY POINT WORKSHELT Uniform Traffic Control Devices for Canada - Chapter B

Emtersection: Superstore Entrance/Park Rd./Route/214 EM Peak Hour - 20 Year Horizon Excluding Development

	Part	Calculation	SubTotal	Priority Points
I_	Accident Rating	From Figure B2-1	-25.0	
II	Delays and	$P_2 \times V_t \times F_e$		
-	Vehicular Stops	N. Leg (2.0 x 6.95 x 1.0)	- 1	
		S. Leg (2.0 x 1.73 x 1.0)	35.7	
		E. Leg (0.25 x 13.62 x 1.0)		56.2
		W. Leg (2.0 x 7.49 x 1.0)		0012
Ш	Intersecting	$(V_a + P) \times (Va + P) \times F_{ow}$		
	Volumes and			
	Pedestrian	$(10.88 + 0.1) \times (4.04 + 0.1) \times 1.0$	45.5	
	Volumes			

P₂ = Qualitative index expressing effect traffic signal would have upon availability of crossing gaps,
Progression of vehicles, delay to vehicles, and the number of stops to which vehicles are subjected to.

 V_t = total annual average daily traffic volume on each individual leg, divided by 1000.

 F_e = expansion factor accounting for increase in vehicular volume occurring within one year due to installation of traffic control signal.

 V_a = total annual average daily traffic volume approaching intersection, divided by 1000.

P = total annual average daily pedestrian volume crossing intersection, divided by 1000.

 F_{ow} = factor expressing increased safety, capacity and facility of movement at intersection of one-way streets due to smaller number of conflict points compared with two-way streets.

Uniform Traffic Control Devices for Canada - Chapter B

Intersection: Superstore Entrance/Park Rd./Route 214

PM Peak Hour - 20 Year Horizon Including Development

	Part	Calculation	SubTotal	Priority Points
I	Accident Rating	From Figure B2-1	-25.0	
II	Delays and	$P_2 \times V_t \times F_e$		
	Vehicular Stops	N. Leg (2.0 x 17.73 x 1.0)	7]	
		S. Leg (2.0 x 12.39 x 1.0)	78.5	
		E. Leg (0.25 x 27.24 x 1.0)		289.5
		W. Leg (2.0 x 5.69 x 1.0)		
Ш	Intersecting	$(V_a + P) \times (Va + P) \times F_{ow}$		
	Volumes and		- 1	
É	Pedestrian	$(17.86 + 0.1) \times (13.04 + 0.1) \times 1.0$	236.0	
	Volumes			

P₂ = Qualitative index expressing effect traffic signal would have upon availability of crossing gaps,

Progression of vehicles, delay to vehicles, and the number of stops to which vehicles are subjected to.

- V_t = total annual average daily traffic volume on each individual leg, divided by 1000.
- F_e = expansion factor accounting for increase in vehicular volume occurring within one year due to installation of traffic control signal.
- V_a = total annual average daily traffic volume approaching intersection, divided by 1000.
- P = total annual average daily pedestrian volume crossing intersection, divided by 1000.
- F_{ow} = factor expressing increased safety, capacity and facility of movement at intersection of one-way streets due to smaller number of conflict points compared with two-way streets.

Uniform Traffic Control Devices for Canada - Chapter B

Intersection: Superstore Entrance/Park Rd./Route 214

PM Peak Hour - Existing with Signals at Northbound Ramp

Part	Calculation	SubTotal	Priority Points
I Accident Rating	From Figure B2-1	-25.0	
II Delays and	$P_2 \times V_t \times F_e$		
Vehicular Stops	N. Leg (2.0 x 7.3 x 1.0)	-	
	S. Leg (2.0 x 1.82 x 1.0)	27.7	
	E. Leg (0.0 x 11.30 x 1.0)		39.9
	W. Leg (2.0 x 4.75 x 1.0)	· ·	
III Intersecting	$(V_a + P) \times (Va + P) \times F_{ow}$		
Volumes and			
Pedestrian	$(8.15 + 0.1) \times (4.41 + 0.1) \times 1.0$	37.2	
Volumes			

 P_2 = Qualitative index expressing effect traffic signal would have upon availability of crossing gaps, Progression of vehicles, delay to vehicles, and the number of stops to which vehicles are subjected to.

 V_t = total annual average daily traffic volume on each individual leg, divided by 1000.

F_e = expansion factor accounting for increase in vehicular volume occurring within one year due to installation of traffic control signal.

V_a = total annual average daily traffic volume approaching intersection, divided by 1000.

P = total annual average daily pedestrian volume crossing intersection, divided by 1000.

 F_{ow} = factor expressing increased safety, capacity and facility of movement at intersection of one-way streets due to smaller number of conflict points compared with two-way streets.

Uniform Fraffic Control Devices for Canada - Chapter B

Intersection: Superstore Entrance/Park Rd./Route 214

PM Peak Hour - 20 Year Horizon Excluding Dev. with Signals at Northbound Ramp

	Part	Calculation	SubTotal	Priority Points
I	Accident Rating	From Figure B2-1	-25.0	
II	Delays and	$P_2 \times V_t \times F_e$		
1	Vehicular Stops	N. Leg (2.0 x 6.95 x 1.0)		
		S. Leg (2.0 x 1.73 x 1.0)	32.3	
	-	E. Leg (0.0 x 13.62 x 1.0)	1	52.8
		W. Leg (2.0 x 7.49 x 1.0)	· ·	
Ш	Intersecting	$(V_a + P) \times (Va + P) \times F_{ow}$		
	Volumes and			
	Pedestrian	$(10.88 + 0.1) \times (4.04 + 0.1) \times 1.0$	45.5	
	Volumes			

P₂ = Qualitative index expressing effect traffic signal would have upon availability of crossing gaps,

Progression of vehicles, delay to vehicles, and the number of stops to which vehicles are subjected to.

V_t = total annual average daily traffic volume on each individual leg, divided by 1000.

 F_e = expansion factor accounting for increase in vehicular volume occurring within one year due to installation of traffic control signal.

V_a = total annual average daily traffic volume approaching intersection, divided by 1000.

P = total annual average daily pedestrian volume crossing intersection, divided by 1000.

 F_{ow} = factor expressing increased safety, capacity and facility of movement at intersection of one-way streets due to smaller number of conflict points compared with two-way streets.

Uniform Traffic Control Devices for Canada - Chapter B

Intersection: Superstore Entrance/Park Rd/Route 214

PM Peak Hour - 20 Year Horizon Including Dev. With Signals at Northbound Ramp

L	Part	Calculation	SubTotal	Priority Points
<u>I</u>	Accident Rating	From Figure B2-1	-25.0	- 2
II	Delays and	$P_2 \times V_t \times F_e$		
	Vehicular Stops	N. Leg (2.0 x 17.73 x 1.0)	1 1	
		S. Leg (2.0 x 12.39 x 1.0)	71,6	
		E. Leg (0.0 x 27.24 x 1.0)		282.6
_		W. Leg (2.0 x 5.69 x 1.0)		
III	Intersecting	$(V_a + P) \times (V_a + P) \times F_{ow}$		
	Volumes and		1 1	
	Pedestrian	$(17.86 + 0.1) \times (13.04 + 0.1) \times 1.0$	236.0	
	Volumes			

 P_2 = Qualitative index expressing effect traffic signal would have upon availability of crossing gaps, Progression of vehicles, delay to vehicles, and the number of stops to which vehicles are subjected to.

V_t = total annual average daily traffic volume on each individual leg, divided by 1000.

F_e = expansion factor accounting for increase in vehicular volume occurring within one year due to installation of traffic control signal.

 V_a = total annual average daily traffic volume approaching intersection, divided by 1000.

P = total annual average daily pedestrian volume crossing intersection, divided by 1000.

F_{ow} = factor expressing increased safety, capacity and facility of movement at intersection of one-way streets due to smaller number of conflict points compared with two-way streets.

Uniform Traffic Control Devices for Ganada - Chapter B

Intersection: Southbound Ramp/Route 214

RM Peak Hour - Existing

L	Part	Calculation	SubTotal	Priority Points
I	Accident Rating	From Figure B2-1	7.0	
II	Delays and	$P_2 \times V_t \times F_e$		
	Vehicular Stops	N. Leg (2.5 x 1.62 x 1.0)		
		S. Leg (2.5 x 0.0 x 1.0)	16.3	
		E. Leg (0.0 x 7.60 x 1.0)		42.2
		W. Leg (2.0 x 6.12 x 1.0)		
Ш	Intersecting	$(V_a + P) \times (Va + P) \times F_{ow}$		
1	Volumes and		7	
	Pedestrian	$(12.12 + 0.1) \times (1.62 + 0.1) \times 1.0$	18.9	
	Volumes	, , , , , , , , , , , , , , , , , , ,		

P₂ = Qualitative index expressing effect traffic signal would have upon availability of crossing gaps,

Progression of vehicles, delay to vehicles, and the number of stops to which vehicles are subjected to.

 V_t = total annual average daily traffic volume on each individual leg, divided by 1000.

F_e = expansion factor accounting for increase in vehicular volume occurring within one year due to installation of traffic control signal.

 V_a = total annual average daily traffic volume approaching intersection, divided by 1000.

P = total annual average daily pedestrian volume crossing intersection, divided by 1000.

 F_{ow} = factor expressing increased safety, capacity and facility of movement at intersection of one-way streets due to smaller number of conflict points compared with two-way streets.

SIGNALIZATION PRIORITY POINT WORKSHEET Uniform Traffic Control Devices for Canada - Chapter B

Intersection: Southbound Ramp/Route 214

PM Peak Hour - 20 Year Horizon Excluding Development

	Part	Calculation	SubTotal	Priority Points
I	Accident Rating	From Figure B2-1	7.0	- 28
II	Delays and	$P_2 \times V_t \times F_e$		
	Vehicular Stops	N. Leg (2.5 x 2.19 x 1.0)	1 1	
		S. Leg (2.5 x 0.0 x 1.0)	32.7	
		E. Leg (0.0 x 15.47 x 1.0)		71.4
		W. Leg (2.0 x 13.62 x 1.0)	1 1	
III	Intersecting	$(V_a + P) \times (V_a + P) \times F_{ow}$		
	Volumes and		1]	
Š.	Pedestrian	$(15.29 + 0.1) \times (2.19 + 0.1) \times 0.9$	31.7	
	Volumes	700 SE		

P₂ = Qualitative index expressing effect traffic signal would have upon availability of crossing gaps,

Progression of vehicles, delay to vehicles, and the number of stops to which vehicles are subjected to.

 V_t = total annual average daily traffic volume on each individual leg, divided by 1000.

F_e = expansion factor accounting for increase in vehicular volume occurring within one year due to installation of traffic control signal.

V_a = total annual average daily traffic volume approaching intersection, divided by 1000.

P = total annual average daily pedestrian volume crossing intersection, divided by 1000.

 F_{ow} = factor expressing increased safety, capacity and facility of movement at intersection of one-way streets due to smaller number of conflict points compared with two-way streets.

Uniform Traffic Gontrol Devices for Ganada - Chapter B

Intersection: Southbound Ramp/Route 214

PM Peak Hour - 20 Year Horizon Including Development

	Part	Calculation	SubTotal	Priority Points
I	Accident Rating	From Figure B2-1	7.0	
II	Delays and	$P_2 \times V_t \times F_e$		
	Vehicular Stops	N. Leg (2.5 x 2.92 x 1.0)		
6		S. Leg (2.5 x 0.0 x 1.0)	61.8	
		E. Leg (0.0 x 27.22 x 1.0)	1	146.8
		W. Leg (2.0 x 27.24 x 1.0)		
III	Intersecting	$(V_a + P) \times (V_a + P) \times F_{ow}$		
	Volumes and			
	Pedestrian	$(28.62 + 0.1) \times (2.92 + 0.1) \times 0.9$	78.0	
	Volumes		/5.0	

P₂ = Qualitative index expressing effect traffic signal would have upon availability of crossing gaps,

Progression of vehicles, delay to vehicles, and the number of stops to which vehicles are subjected to.

 V_t = total annual average daily traffic volume on each individual leg, divided by 1000.

 F_e = expansion factor accounting for increase in vehicular volume occurring within one year due to installation of traffic control signal.

 V_a = total annual average daily traffic volume approaching intersection, divided by 1000.

P = total annual average daily pedestrian volume crossing intersection, divided by 1000.

 F_{ow} = factor expressing increased safety, capacity and facility of movement at intersection of one-way streets due to smaller number of conflict points compared with two-way streets.

Uniform Traffic Control Devices for Canada - Chapter B

Intersection: Southbound Ramp/Route 214

PM Peak Hour - Existing with Signals at Northbound Ramp

	Part	Calculation	SubTotal	Priority Points
I	Accident Rating	From Figure B2-1	7.0	*
II	Delays and	$P_2 \times V_t \times F_e$		
	Vehicular Stops	N. Leg (2.5 x 1.62 x 1.0)		
		S. Leg (2.5 x 0.0 x 1.0)	9.4	
		E. Leg (-0.9 x 7.60 x 1.0)		35.3
	4	W. Leg (2.0 x 6.12 x 1.0)		
III	Intersecting	$(V_a + P) \times (Va + P) \times F_{ow}$		
	Volumes and			
	Pedestrian	$(12.12 + 0.1) \times (1.62 + 0.1) \times 0.9$	18.9	
<u> </u>	Volumes		2	

P₂ = Qualitative index expressing effect traffic signal would have upon availability of crossing gaps,
Progression of vehicles, delay to vehicles, and the number of stops to which vehicles are subjected to.

 V_t = total annual average daily traffic volume on each individual leg, divided by 1000.

F_e = expansion factor accounting for increase in vehicular volume occurring within one year due to installation of traffic control signal.

 V_a = total annual average daily traffic volume approaching intersection, divided by 1000.

P = total annual average daily pedestrian volume crossing intersection, divided by 1000.

 F_{ow} = factor expressing increased safety, capacity and facility of movement at intersection of one-way streets due to smaller number of conflict points compared with two-way streets.

Uniform Traffic Control Devices for Ganada - Chapter B

Intersection: Southbound Ramp/Route 214

PM Peak Hour - 20 Year Horizon Excluding Dev. with Signals at Northbound Ramp

Part	Calculation	SubTotal	Priority Points
I Accident Ratio	rom Figure B2-1	7.0	
II Delays and	$P_2 \times V_t \times F_e$		
Vehicular Stop	N. Leg (2.5 x 2.19 x 1.0)		
	S. Leg (2.5 x 0.0 x 1.0)	18.8	
	E. Leg (-0.9 x 15.47 x 1.0)		57.5
	W. Leg (2.0 x 13.62 x 1.0)		
III Intersecting	$(V_a + P) \times (V_a + P) \times F_{ow}$		
Volumes and			
Pedestrian	$(15.29 + 0.1) \times (2.19 + 0.1) \times 0.9$	31.7	
Volumes			

P₂ = Qualitative index expressing effect traffic signal would have upon availability of crossing gaps,
Progression of vehicles, delay to vehicles, and the number of stops to which vehicles are subjected to.

 V_t = total annual average daily traffic volume on each individual leg, divided by 1000.

 F_e = expansion factor accounting for increase in vehicular volume occurring within one year due to installation of traffic control signal.

 V_a = total annual average daily traffic volume approaching intersection, divided by 1000.

P = total annual average daily pedestrian volume crossing intersection, divided by 1000.

 F_{ow} = factor expressing increased safety, capacity and facility of movement at intersection of one-way streets due to smaller number of conflict points compared with two-way streets.

Uniform Traffic Control Devices for Ganada - Chapter B

Intersection: Southbound Ramp/Route 214

PM Peak Hour - 20 Year Horizon Including Dev. With Signals at Northbound Ramp

L	Part	Calculation	SubTotal	Priority Points
I_	Accident Rating	From Figure B2-1	7.0	
II	Delays and	P ₂ x V _t x F _e		
	Vehicular Stops	N. Leg (2.5 x 2.92 x 1.0)		
		S. Leg (2.5 x 0.0 x 1.0)	37.3	
		E. Leg (-0.9 x 27.22 x 1.0)	X	122.3
		W. Leg (2.0 x 27.24 x 1.0)		
III	Intersecting	$(V_a + P) \times (Va + P) \times F_{ow}$		
	Volumes and			
	Pedestrian	$(28.62 + 0.1) \times (2.92 + 0.1) \times 0.9$	78.0	
L	Volumes			

P₂ = Qualitative index expressing effect traffic signal would have upon availability of crossing gaps,

Progression of vehicles, delay to vehicles, and the number of stops to which vehicles are subjected to.

 V_t = total annual average daily traffic volume on each individual leg, divided by 1000.

 F_e = expansion factor accounting for increase in vehicular volume occurring within one year due to installation of traffic control signal.

 V_a = total annual average daily traffic volume approaching intersection, divided by 1000.

P = total annual average daily pedestrian volume crossing intersection, divided by 1000.

 F_{ow} = factor expressing increased safety, capacity and facility of movement at intersection of one-way streets due to smaller number of conflict points compared with two-way streets.

Uniform Traffic Control Devices for Canada - Chapter B

Intersection: Southbound Ramp/Route 214

PM Peak Hour - Existing with Signals at Superstore and Northbound Ramp

	Part	Calculation	SubTotal	Priority Points
I	Accident Rating	From Figure B2-1	7.0	
II	Delays and	$P_2 \times V_t \times F_e$		
	Vehicular Stops	N. Leg (2.5 x 1.62 x 1.0)		
		S. Leg (2.5 x 0.0 x 1.0)	-8.3	
		E. Leg (-0.9 x 7.60 x 1.0)		17.6
		W. Leg (-0.9 x 6.12 x 1.0)		
III	Intersecting	$(V_a + P) \times (Va + P) \times F_{ow}$		
	Volumes and			
	Pedestrian	$(12.12 + 0.1) \times (1.62 + 0.1) \times 0.9$	18.9	
_	Volumes			

 P_2 = Qualitative index expressing effect traffic signal would have upon availability of crossing gaps, Progression of vehicles, delay to vehicles, and the number of stops to which vehicles are subjected to.

 V_t = total annual average daily traffic volume on each individual leg, divided by 1000.

F_e = expansion factor accounting for increase in vehicular volume occurring within one year due to installation of traffic control signal.

V_a = total annual average daily traffic volume approaching intersection, divided by 1000.

P = total annual average daily pedestrian volume crossing intersection, divided by 1000.

 F_{ow} = factor expressing increased safety, capacity and facility of movement at intersection of one-way streets due to smaller number of conflict points compared with two-way streets.

Uniform Traffic Control Devices for Canada - Chapter B

Intersection: Southbound Ramp/Route 214

PM Peak Hour - 20 Year Horizon Excluding Dev. With Signals at Supertore

and Northbound Ramp

Par	rt	Calculation	SubTotal	Priority Points
I Acciden	t Rating	From Figure B2-1	7.0	G.
II Delays a	ınd	P ₂ x V _t x F _e		
Vehicula	ar Stops	N. Leg (2.5 x 2.19 x 1.0)		
		S. Leg (2.5 x 0.0 x 1.0)	-20.7	
		E. Leg (-0.9 x 15.47 x 1.0)	1 1	18.0
		W. Leg (-0.9 x 13.62 x 1.0)		
III Intersect	ting	$(V_a + P) \times (Va + P) \times F_{ow}$		
Volumes	s and			
Pedestria	an	$(15.29 + 0.1) \times (2.19 + 0.1) \times 0.9$	31.7	
Volumes	S			

 P_2 = Qualitative index expressing effect traffic signal would have upon availability of crossing gaps, Progression of vehicles, delay to vehicles, and the number of stops to which vehicles are subjected to.

V_t = total annual average daily traffic volume on each individual leg, divided by 1000.

 F_e = expansion factor accounting for increase in vehicular volume occurring within one year due to installation of traffic control signal.

V_a = total annual average daily traffic volume approaching intersection, divided by 1000.

P = total annual average daily pedestrian volume crossing intersection, divided by 1000.

 F_{ow} = factor expressing increased safety, capacity and facility of movement at intersection of one-way streets due to smaller number of conflict points compared with two-way streets.

SIGNALIZATION PRIORITY POINT WORKSHEET Uniform Traffic Control Devices for Canada - Chapter B

Intersection: Southbound Ramp/Route 214

PM Peak Hour - 20 Year Horizon Including Dev. With Signals at Supertore and Northbound Ramp

	Part	Calculation	SubTotal	Priority Points
	Accident Rating	From Figure B2-1	7.0	
II	Delays and	$P_2 \times V_t \times F_e$		
	Vehicular Stops	N. Leg (2.5 x 2.92 x 1.0)	1 1	
		S. Leg (2.5 x 0.0 x 1.0)	-41.7	
1		E. Leg (-0.9 x 27.22 x 1.0)	l.	43.3
		W. Leg (-0.9 x 27.24 x 1.0)	8	
III	Intersecting	$(V_a + P) \times (Va + P) \times F_{ow}$		
	Volumes and		1]	
	Pedestrian	$(28.62 + 0.1) \times (2.92 + 0.1) \times 0.9$	78.0	
	Volumes			

P₂ = Qualitative index expressing effect traffic signal would have upon availability of crossing gaps,

Progression of vehicles, delay to vehicles, and the number of stops to which vehicles are subjected to.

 V_t = total annual average daily traffic volume on each individual leg, divided by 1000.

 F_e = expansion factor accounting for increase in vehicular volume occurring within one year due to installation of traffic control signal.

 V_a = total annual average daily traffic volume approaching intersection, divided by 1000.

P = total annual average daily pedestrian volume crossing intersection, divided by 1000.

 F_{ow} = factor expressing increased safety, capacity and facility of movement at intersection of one-way streets due to smaller number of conflict points compared with two-way streets.

Uniform Traffic Control Devices for Ganada - Chapter B

Intersection: Northbound Ramp/Route 214

PM Peak Hour - Existing

	Part	Calculation	SubTotal	Priority Points
<u> [</u>	Accident Rating	From Figure B2-1	7.0	
II	Delays and	P ₂ x V _t x F _e		
	Vehicular Stops	N. Leg (2.5 x 0.0 x 1.0)		
ĺ		S. Leg (2.5 x 6.87 x 1.0)	34.6	
1		E. Leg (-0.5 x 14.12 x 1.0)		109.5
		W. Leg (2.0 x 12.26 x 1.0)		
Ш	Intersecting	$(V_a + P) \times (V_a + P) \times F_{ow}$		
	Volumes and			
	Pedestrian	$(10.72 + 0.1) \times (6.87 + 0.1) \times 0.9$	67.9	
L	Volumes			

P₂ = Qualitative index expressing effect traffic signal would have upon availability of crossing gaps,

Progression of vehicles, delay to vehicles, and the number of stops to which vehicles are subjected to.

 V_t = total annual average daily traffic volume on each individual leg, divided by 1000.

 F_e = expansion factor accounting for increase in vehicular volume occurring within one year due to installation of traffic control signal.

V_a = total annual average daily traffic volume approaching intersection, divided by 1000.

P = total annual average daily pedestrian volume crossing intersection, divided by 1000.

 F_{ow} = factor expressing increased safety, capacity and facility of movement at intersection of one-way streets due to smaller number of conflict points compared with two-way streets.

SIGNALIZATION PRIORITY POINT WORKSHEET Uniform Traffic Control Devices for Canada - Chapter B

Intersection: Northbound Ramp/Route 214

PM Peak Hour - 20 Year Horizon Excluding Development

	Part	Calculation	SubTotal	Priority Points
I	Accident Rating	From Figure B2-1	7.0	
II	Delays and	$P_2 \times V_t \times F_e$		
	Vehicular Stops	N. Leg (2.5 x 0.0 x 1.0)		
		S. Leg (2.5 x 9.63 x 1.0)	46.2	
		E. Leg (-0.5 x 17.54 x 1.0)		167.1
		W. Leg (2.0 x 15.47 x 1.0)		
III	Intersecting	$(V_a + P) \times (Va + P) \times F_{ow}$		
	Volumes and		1 1	
	Pedestrian	$(12.91 + 0.1) \times (9.63 + 0.1) \times 0.9$	113.9	
L	Volumes		8	

P₂ = Qualitative index expressing effect traffic signal would have upon availability of crossing gaps,

Progression of vehicles, delay to vehicles, and the number of stops to which vehicles are subjected to.

V_t = total annual average daily traffic volume on each individual leg, divided by 1000.

F_e = expansion factor accounting for increase in vehicular volume occurring within one year due to installation of traffic control signal.

V_a = total annual average daily traffic volume approaching intersection, divided by 1000.

P = total annual average daily pedestrian volume crossing intersection, divided by 1000.

 F_{ow} = factor expressing increased safety, capacity and facility of movement at intersection of one-way streets due to smaller number of conflict points compared with two-way streets.

Uniform Traffic Control Devices for Canada - Chapter B

Intersection: Northbound Ramp/Route 214

PM Peak Hour - 20 Year Horizon Including Development

	Part	Calculation	SubTotal	Priority Points
I	Accident Rating	From Figure B2-1	7.0	
II	Delays and	$P_2 \times V_t \times F_e$		
	Vehicular Stops	N. Leg (2.5 x 0.0 x 1.0)	1	
		S. Leg (2.5 x 12.66 x 1.0)	72.6	
		E. Leg (-0.5 x 27.06 x 1.0)		341.5
		W. Leg (2.0 x 27.22 x 1.0)		
III	Intersecting	$(V_a + P) \times (Va + P) \times F_{ow}$		
	Volumes and	10 10 10 10 10 10 10 10 10 10 10 10 10 1		
	Pedestrian	$(22.70 + 0.1) \times (12.66 + 0.1) \times 0.9$	261.9	
	Volumes			

P₂ = Qualitative index expressing effect traffic signal would have upon availability of crossing gaps,

Progression of vehicles, delay to vehicles, and the number of stops to which vehicles are subjected to.

 V_t = total annual average daily traffic volume on each individual leg, divided by 1000.

 F_e = expansion factor accounting for increase in vehicular volume occurring within one year due to installation of traffic control signal.

V_a = total annual average daily traffic volume approaching intersection, divided by 1000.

P = total annual average daily pedestrian volume crossing intersection, divided by 1000.

 F_{ow} = factor expressing increased safety, capacity and facility of movement at intersection of one-way streets due to smaller number of conflict points compared with two-way streets.

APPENDIX E

EXISTING AND HORIZON LOS RESULTS WITHOUT IMPROVEMENTS

Analyst: Stacy D. Muise Agency/Co.: O'Halloran Campbell Consultant Date Performed: 8/13/2002 Analysis Time Period: PM Peak (4:00 to 5:00 PM) Intersection: Superstore/Park Rd./Route 214 Jurisdiction: NSTPW Units: U. S. Customary Analysis Year: 2002 - Existing Project ID: Highway 102/Route 214 Interchange Area Transportation Study East/West Street: Route 214 North/South Street: Superstore/Park Rd. Intersection Orientation: EW Study period (hrs): 0.25 Vehicle Volumes and Adjustments Major Street: Approach Eastbound Westbound Movement 1 2 3 4 5 6 L T R L \mathbf{T} R Volume 22 129 9 62 204 318 Peak-Hour Factor, PHF 0.79 0.83 0.45 0.80 0.92 0.92 Hourly Flow Rate, HFR 27 155 20 77 221 345 Percent Heavy Vehicles 3 Median Type Undivided RT Channelized? Lanes 1 Ω 0 1 0 Configuration LTR LTR pstream Signal? Yes No Minor Street: Approach Northbound Southbound Movement 7 8 9 10 11 12 L Т R L T R Volume $\overline{11}$ 18 56 235 53 Peak Hour Factor, PHF 0.55 0.65 0.82 0.96 1.00 0.83 ourly Flow Rate, HFR 19 27 68 244 7 63 Percent Heavy Vehicles 0 5 1 0 2 Percent Grade (%) 0 0 Median Storage lared Approach: Exists? No No Storage RT Channelized? anes O 1 1 1 Ω onfiguration LTR TR Delay, Queue Length, and Level of Service pproach EΒ WB Northbound Southbound lovement 1 4 8 10 11 12 Lane Config LTR LTR LTR L TR (vph) 27 77 114 244 70](m) (vph) 978 1391 420 226 578 v/c 0.03 0.06 0.27 1.08 0.12 95% queue length 0.09 0.18 1.09 10.76 0.41 ontrol Delay 8.8 7.7 16.7 128.6 12.1 Α C

HCS2000: Unsignalized Intersections Release 4.1a

16.7

C

В

102.6

F

Stacy D. Muise

O'Halloran Campbell Consultants Ltd. 657 Bedford Row

Approach Delay

Approach LOS

p Box 1028, Halifax Nova Scotia **占3J 2X1**

Analyst: Stacy D. Muise

Agency/Co.: O'Halloran Campbell Consultant

Date Performed: 8/13/2002

Analysis Time Period: PM Peak (4:00 to 5:00 PM)

Intersection: Superstore/Park Rd./Route 214

Jurisdiction: NSTPW

Units: U. S. Customary

Analysis Year: 2022 - Horizon Excluding Devs.

Project ID: Highway 102/Route 214 Interchange Area Transportation Study

East/West Street: Route 214

North/South Street: Superstore/Park Rd.

Intersection Orientation: PW

344.1

F

14.1

В

270.6

F

Intersection Ori	entation:	EW		St	udy	period	i (hrs)	: 0.2	25	
	Vehi	.cle Vol	umes and	Adius	tme	nte				
Major Street: A	pproach	Ea	stbound				tbound			
	ovement	1	2	3	- 1					
2		Ĺ	Ť		- 1	4	5	6		
		11	T	R		L	T	R		
Volume		22	192	9		60	110			
Peak-Hour Factor	DHP	0.79		_		62	417	159		
Hourly Flow Rate	UDD		0.83	0.45		0.80	0.92	0.92	;	
Porcent Means Well	nek	27	231	20		77	453	172		
Percent Heavy Vel		7	~-			3				
Median Type	Undi	vided								
RT Channelized?										
Lanes		0	1 0			0	1 (0		
Configuration		I.	TR .			LT		•		
Upstream Signal?			Yes			LI				
			165				No			
	proach	No	thbound			Sou	thbound	3 —		
	vement	7	8	9	-1	10	11			
		Ĺ	Ť	R				12		
				K	-	L	T	R		
Volume		11	18	56		235	7			
Peak Hour Factor,	PHF	0.55	0.65	0.82				53		
lourly Flow Rate,	HFD	19	27			0.96	1.00	0.83		
Percent Heavy Veh	10100	= -	= -	68		244	7	63		
Percent Grade (%)	TCIES	0	0	5		1	0	2		
Refrenc Grade (8)			0				0			
edian Storage										
lared Approach:	Exists?		No				No			
	Storage						NO			
RT Channelized?										
anes		0	• •			_				
onfiguration		U	1 0			1	1 0)		
rguracion			LTR			L	TF	t		
J		_	<u> </u>	==				<u> </u>		_
	_Delay, Qu	ieue Len	gth, and	l Level	l of	Servi	ce			
pproach	EB	WB	North	bound		= = = · = ·	South	bound		
lovement	1	4	7 8		9	1 10		1	12	
ane Config	LTR	LTR	_	TR	•	l Î	- 1		TR	
(vph)	27	77		1.4	_					
(m) (vph)	929			.14			14		70	
/c (Vpii)		1304	_	34		15	54		467	
	0.03	0.06	0	.34		1.	. 58		0.15	
5% queue length	0.09	0.19	1	.48			5.72		0.52	
Ontrol Delaw	0.0					Τ,	· · / 4.		U. 04	

HCS2000: Unsignalized Intersections Release 4.1c

21.3

C

21.3

C

7.9

Α

9.0

Α

stacy D. Muise

ontrol Delay

Approach Delay

Approach Los

OS

O'Halloran Campbell Consultants Ltd.

657 Bedford Row
O Box 1028, Halifax Nova Scotia

Analyst: Stacy D. Muise Agency/Co.: O'Halloran Campbell Consultant Date Performed: 8/13/2002 Analysis Time Period: PM Peak (4:00 to 5:00 PM) Intersection: Superstore/Park Rd./Route 214 Jurisdiction: NSTPW Units: U. S. Customary Analysis Year: 2022 - Horizon Including Devs. Project ID: Highway 102/Route 214 Interchange Area Transportation Study East/West Street: Route 214 North/South Street: Superstore/Park Rd. Intersection Orientation: EW Study period (hrs): 0.25 Vehicle Volumes and Adjustments Major Street: Approach Eastbound Westbound Movement 1 2 4 5 6 L T R L \mathbf{T} R Volume 48 135 63 475 199 379 Peak-Hour Factor, PHF 0.79 0.83 0.45 0.80 0.92 0.92 Hourly Flow Rate, HFR 60 162 140 593 216 411 Percent Heavy Vehicles Median Type Undivided RT Channelized? Lanes 1 0 1 0 Configuration LTR LTR Upstream Signal? Yes No Minor Street: Approach Northbound Southbound Movement 7 8 10 11 12 L T R L T R Volume 77 126 406 587 17 Peak Hour Factor, PHF 0.55 0.65 0.82 0.96 1.00 0.83 Hourly Flow Rate, HFR 139 193 495 611 17 157 Percent Heavy Vehicles 0 0 5 1 0 2 Percent Grade (%) 0 0 Median Storage Flared Approach: Exists? No No Storage RT Channelized? Lanes 1 O 1 0 configuration LTR TR Delay, Queue Length, and Level of Service Approach EB WB Northbound Southbound Movement 1 4 8 10 11 12 Lane Config LTR LTR LTR L TR v (vph) 60 593 827 611 174 C(m) (vph) 927 1249 0 0 112 v/c 0.06 0.47 1.55 95% queue length 0.21 2.63 12.83 Control Delay 9.2 10.5 356.6 LOS A В F F F Approach Delay

HCS2000: Unsignalized Intersections Release 4.1c

Stacy D. Muise
O'Halloran Campbell Consultants Ltd.
657 Bedford Row
Box 1028, Halifax Nova Scotia

3J 2X1

Approach Los

HCS2000: Unsignalized Intersections Release 4.1c TWO-WAY STOP CONTROL SUMMARY Analyst: Stacy D. Muise Agency/Co.: O'Halloran Campbell Consultant 8/13/2002 Date Performed: Analysis Time Period: PM Peak (4:00 to 5:00 PM) Intersection: Southbound Ramp/Route 214 Jurisdiction: NSTPW Units: U. S. Customary 2002 - Existing Analysis Year: Project ID: Highway 102/Route 214 Interchange Area Transportation Study East/West Street: Route 214 Southbound Ramp LiNorth/South Street: Intersection Orientation: EW Study period (hrs): 0.25 Vehicle Volumes and Adjustments Major Street: Approach Westbound Eastbound Movement 1 2 3 4 5 6 T L R L T R Volume 321 99 170 535 Peak-Hour Factor, PHF 0.93 0.78 0.85 0.92 Hourly Flow Rate, HFR 345 126 184 629 Percent Heavy Vehicles 4 Median Type Undivided RT Channelized? Lanes 0 1 0 1 Configuration TR LT **Jpstream Signal?** Yes No

Minor Street:	Approach	N	orthbou	ınd	So	uthboun	3	
	Movement	7 L	8 T	9 R	10 L	11 T	12 R	1
Volume Peak Hour Factor Hourly Flow Rat Percent Heavy V Percent Grade (Median Storage Flared Approach	e, HFR Wehicles (%) 1: Exists? Storage		0		 88 0.78 112 4	1 1.00 1 0	49 0.82 59 7	
RT Channelized? Lanes Configuration	· -				0 T.1	1 :	Y es L	

LT

R

pproach	_Delay, EB	Queue L	engtl	n, and Lev Northbour	vel of		uthbou	nd
lovement Lane Config	1	4 LT	7	8	9	10 LT	11	12 R
(vph)		184	_	·	10	113		59
[¦(w) (Abp)		1077				125		469
v/c		0.17				0.90		0.13
95% queue length		0.61				5.80		0.43
ontrol Delay		9.0				122.6		13.8
OS		A				F		В
Approach Delay						_	85.3	-
Approach LOS							F	
<u></u>							-	

HCS2000: Unsignalized Intersections Release 4.1c

Stacy D. Muise O'Halloran Campbell Consultants Ltd. 657 Bedford Row O Box 1028, Halifax Nova Scotia 3J 2X1

Analyst: Stacy D. Muise Agency/Co.: O'Halloran Campbell Consultant Date Performed: 8/13/2002 Analysis Time Period: PM Peak (4:00 to 5:00 PM) Intersection: Southbound Ramp/Route 214 Jurisdiction: NSTPW Units: U. S. Customary Analysis Year: 2022 - Horizon Excluding Devs. Project ID: Highway 102/Route 214 Interchange Area Transportation Study East/West Street: Route 214 North/South Street: Southbound Ramp Intersection Orientation: EW Study period (hrs): 0.25 Vehicle Volumes and Adjustments Major Street: Approach Eastbound Westbound Movement 2 3 4 5 6 Ļ T R L T R Volume 369 114 230 724 Peak-Hour Factor, PHF 0.93 0.78 0.92 0.85 Hourly Flow Rate, HFR 396 146 249 851 Percent Heavy Vehicles 4 Median Type Undivided RT Channelized? Lanes 0 0 1 Configuration TR LT Upstream Signal? Yes No Minor Street: Approach Northbound Southbound Movement 7 8 10 11 12 L T R L T R Volume 131 73 Peak Hour Factor, PHF 0.78 1.00 0.82 Hourly Flow Rate, HFR 167 2 89 Percent Heavy Vehicles 0 0 0 Percent Grade (%) 1 1 Median Storage Flared Approach: Exists? Storage RT Channelized? Yes Lanes 0 1 1 Configuration LT R

approach Aovement	EB W	VB	h, and Level Northbound		Southbound	· · · · · · · · · · · · · · · · · · ·
Lane Config	1 4		8	9	10 11	12
Dane Confrig	L	et		- 1	LT	R
(vph)	2	49			169	89
 ♪(m) (vph)	1	013			64	359
v/c	0	.25			2.64	
95% queue length	_	.97				0.25
ontrol Delay	_	7			16.88	0.96
los	-				881.1	18.3
Approach Delay		A			F	C
					583.4	
Approach LOS					F	

HCS2000: Unsignalized Intersections Release 4.1c

Stacy D. Muise O'Halloran Campbell Consultants Ltd. 657 Bedford Row

O Box 1028, Halifax Nova Scotia

⅓3J 2X1

TWO-WAY STOP CONTROL SUMMARY Analyst: Stacy D. Muise Agency/Co.: O'Halloran Campbell Consultant Date Performed: 8/13/2002 Analysis Time Period: PM Peak (4:00 to 5:00 PM) Intersection: Southbound Ramp/Route 214 Jurisdiction: Units: U. S. Customary Analysis Year: 2022 - Horizon Including Devs. Project ID: Highway 102/Route 214 Interchange Area Transportation Study East/West Street: Route 214 [North/South Street: Southbound Ramp Intersection Orientation: EW Study period (hrs): 0.25 Vehicle Volumes and Adjustments Major Street: Approach Eastbound Westbound Movement 1 2 4 5 6 L Ŧ R T L R Volume 849 279 254 1308 Peak-Hour Factor, PHF 0.93 0.78 0.92 0.85 Hourly Flow Rate, HFR 912 357 276 1538 Percent Heavy Vehicles 4 Median Type Undivided RT Channelized? Lanes 0 1 configuration TR LT Upstream Signal? Yes No Minor Street: Approach Northbound Southbound Movement 7 8 10 11 12 L T R L T R Volume 148 2 124 Peak Hour Factor, PHF 0.78 1.00 0.82 Hourly Flow Rate, HFR 189 2 151 Percent Heavy Vehicles 4 0 7 Percent Grade (%) 1 1 Median Storage lared Approach: Exists? Storage RT Channelized? Yes Lanes 0 1 1 configuration LT R Delay. Oueue Length

pproach	EB WB	Tn, and Level of Northbound	Service Southbo	nind.
_lovement Lane Config	1 4 7	8 9	10 11 LT	12
(vph)	276		191	R
(m) (vph)	539		0	151 137
v/c 95% queue length	0.51 2 2.89			1.10
ontrol Delay	18.5			8.45 170.7
OS Approach Delay	C		F	F
Approach LOS				
l			<u> </u>	

HCS2000: Unsignalized Intersections Release 4.1c

Stacy D. Muise O'Halloran Campbell Consultants Ltd. 657 Bedford Row O Box 1028, Halifax Nova Scotia J3J 2X1

Analyst: Stacy D. Muise

Agency/Co.: O'Halloran Campbell Consultant

Date Performed: 8/13/2002

Analysis Time Period: PM Peak (4:00 to 5:00 PM)
[Intersection: Northbound Ramp/Route 214]

Jurisdiction: NSTPW

Units: U. S. Customary

Analysis Year: 2002 - Existing

Project ID: Highway 102/Route 214 Interchange Area Transportation Study

East/West Street: Route 214

North/South Street: Northbound Ramp

Intersection Orientation: EW Study period (hrs): 0.25

Vehi	.cle Volu	mes and	Adius	atmente			
Major Street: Approach		tbound		- CING110 E	Westbound		
Movement	1	2	3	4	5	6	
from	L	T	R	l i	Ť	Ř	
		_		1 -	-	••	
Volume	59	350			439	121	
Peak-Hour Factor, PHF	0.87	0.95			0.88	0.87	
Hourly Flow Rate, HFR	67	368			498	139	
Percent Heavy Vehicles	4						
	vided						
RT Channelized?							
Lanes	1	1			1 0		
Configuration	L	T			TR		
Upstream Signal?		Yes			No		
Minor Street: Approach	Nor	thbound		<u> </u>	Southbound		F 1
Movement	7	8	9	1 10		12	
	Ĺ	Ť	Ř	L	T	R	11
Ц	_	_		1 -	-	K	1.5
Volume	266	1	342	_			
Feak Hour Factor, PHF	0.80	1.00	0.92				
Hourly Flow Rate, HFR	332	1	371				
└-Percent Heavy Vehicles	4	0	6				
Percent Grade (%)		1			0		
Median Storage					_		
Plared Approach: Exists?							
□ Storage							
RT Channelized?			No				
_f -panes	0	1 1					
Configuration	LT	R					
Land .							
							

approach	Delay, EB	Queue WB	Length,	and Le			outhbour	<u> </u>
fovement	1	4	1 7 "	8	9	•		
Lane Config	Ĺ	-	ĹT	0	R	10	11	12
(vph)	67		333		371			
(m) (vph)	933		295		755			
v/c	0.07		1.13		0.49			
95% queue length	0.23		13.8)	2.74			
control Delay	9.2		130.	_	14.3			
os	A		F		В			
Approach Delay			-	69.1				
Approach LOS				F				
				•				

HCS2000: Unsignalized Intersections Release 4.1c

Stacy D. Muise
O'Halloran Campbell Consultants Ltd.
1657 Bedford Row
O Box 1028, Halifax Nova Scotia
63J 2X1

TWO-WAY STOP CONTROL SUMMARY Analyst: Stacy D. Muise Agency/Co.: O'Halloran Campbell Consultant Date Performed: 8/13/2002 Analysis Time Period: PM Peak (4:00 to 5:00 PM) Intersection: Northbound Ramp/Route 214 Jurisdiction: Units: U. S. Customary Analysis Year: 2022 - Horizon Excluding Devs. Project ID: Highway 102/Route 214 Interchange Area Transportation Study East/West Street: Route 214 Worth/South Street: Northbound Ramp Intersection Orientation: EW Study period (hrs): 0.25 Vehicle Volumes and Adjustments Major Street: Approach Eastbound Westbound Movement 1 2 3 5 6 L \mathbf{T} R L T R Jolume 72 428 559 154 Peak-Hour Factor, PHF 0.87 0.95 0.88 0.87 Hourly Flow Rate, HFR 82 450 635 177 Percent Heavy Vehicles 4 Median Type Undivided RT Channelized? Lanes 1 1 0 configuration T TR Jpstream Signal? Yes No Minor Street: Approach Northbound Southbound Movement 7 8 10 11 12 L T R T R Volume 395 508 Peak Hour Factor, PHF 0.80 1.00 0.92 Hourly Flow Rate, HFR 493 2 552 Percent Heavy Vehicles 4 0 6 Percent Grade (%) 1 0 Median Storage lared Approach: Exists? Storage RT Channelized? No **Lanes** 0 1 1 configuration LT R Delay, Queue Length, and Level of Service pproach lovement EΒ WB Southbound Northbound 1 7 8 10 11 12 Lane Config L LT R (vph) 82 495 552 ∮(m) (vph) 802 211 698 v/c 0.10 2.35 0.79 95% queue length 0.34 40.13 7.91

HCS2000: Unsignalized Intersections Release 4.1c

656.2

26.7

D

324.3

F

Stacy D. Muise
O'Halloran Campbell Consultants Ltd.
1657 Bedford Row

10.0-

Α

ontrol Delay

Approach Delay

Approach LOS

OS

O Box 1028, Halifax Nova Scotia

TWO-WAY STOP CONTROL SUMMARY Analyst: Stacy D. Muise Agency/Co.: O'Halloran Campbell Consultant Date Performed: 8/13/2002 Analysis Time Period: PM Peak (4:00 to 5:00 PM) Intersection: Northbound Ramp/Route 214 Jurisdiction: NSTPW Units: U. S. Customary Analysis Year: 2022 - Horizon Including Devs. Project ID: Highway 102/Route 214 Interchange Area Transportation Study East/West Street: Route 214 North/South Street: Northbound Ramp Intersection Orientation: EW Study period (hrs): 0.25 Vehicle Volumes and Adjustments Major Street: Approach Eastbound Westbound Movement 1 2 4 5 6 Т Ļ R T L R Volume 172 825 956 181 Peak-Hour Factor, PHF 0.87 0.95 0.88 0.87 Hourly Flow Rate, HFR 197 868 1086 208 Percent Heavy Vehicles Median Type Undivided RT Channelized? Lanes 1 1 1 0 Configuration L T TR Jpstream Signal? Yes No Minor Street: Approach Northbound Southbound Movement 7 8 10 11 12 T L R T R Volume 606 2 582 Peak Hour Factor, PHF 0.80 1.00 0.92 Hourly Flow Rate, HFR 757 2 632 Percent Heavy Vehicles 0 6 Percent Grade (%) 1 0 edian Storage lared Approach: Exists? Storage RT Channelized? No **Lanes** 0 1 1 configuration LT R

pproach	_Delay, (EB	Queue WB	Leng		d Leve. hbound	l of	Ser		Southbound	
_Movement Lane Config	1 L	4	7 L		8	9 R		10	11	12
(vph)	197		7	59		632				
(m) (vph)	527		3	_		465				
A\C (.E)	0.37			.46		1.36				
95% queue length	1.72			3.06		29.0				
ontrol Delay	15.9					199.	-			
os	С		1	7		F	•			
Approach Delay						•				
Approach LOS					F					
					-					

HCS2000: Unsignalized Intersections Release 4.1c

Stacy D. Muise O'Halloran Campbell Consultants Ltd. 657 Bedford Row O Box 1028, Halifax Nova Scotia J3J 2X1

Analyst: Stacy D. Muise

Inter.: Elmsdale S. C./Route 214

Agency: O'Halloran Campbell Consultant

Area Type: All other areas

Date: 07/05/2002 Period: PM Peak (4:00 to 5:00 PM) Jurisd: NSTPW

Year : 2002 - Existing

Project ID: Highway 102/Route 214 Interchange Area Transportation Study
E/W St: Rte 214
N/S St: Elmsdale Shopping Centre N/S St: Elmsdale Shopping Centre

1				ÇNALI:	ZED I	NTERSE	ÇTION	SUMM	ARY				
	Eas	stbou		We	stbou	nd	No	rthbo	und	Sou	ıthbo	und	
_	L	T	R	L	T	R	L	T	R	L	T	R	
No. Lanes GConfig Volume Lane Width	1 L 285 12.1	1 T 407 12.1	0	0	1 T 315 15.7	1 R 189 12.1	0	0	0	L 232 15.7	0	1 R 245 15.7	

Dur	ation	0.25	Area '	Type:	All c	ther	areas				····-
					gnal C						
Pha	se Comb	ination 1	2	3	4	(4)		5	6	7	8
₹B	Left	A	A			NB	Left		-	•	•
]	Thru	A	A				Thru				
	Right						Right				
-0	Peds	х	х				Peds				
VB	Left					SB	Left	A			
ļ. —	Thru		A			55	Thru	A			
0	Right		A				Right	A			
	Peds		X			i		A			
ÌВ	Right		A			I I I	Peds				
3B	Right					EB	Right				
						WB	Right				
Gre		7.8	13.7					12.8			
	low	4.5	4.5					3.0			
A11	Red	1.4	1.4					1.9			
								Cycle	Lengt	h. 51 0	8000

Appr/ Lane	Lane Group	Intersect Adj Sat Flow Rate	Rat:		ce Summa Lane (Appr	oach	
rp	Capacity	(s)	V/C	g/C	Delay	LOS	Delay	LOS	
Eastbo	und								
LI.	504	1767	0.68	0.57	11.3	В			
C	1030	1792	0.45	0.57	6.5	A	8.6	A	
Westbo	und								
	619	2025	0.56	0.01	16.0	_		_	
5	481	2025 1573	0.56 0.21	0.31	16.0	В	15.4	В	
Northbo		13/3	0.21	0.31	13.4	В			
Southbo	ound								
F	537	2000	0.55	0.27	17.3	В			
<u> </u>	481	1790	0.28	0.27	15.1	В	16.6	В	

HCS2000: Signalized Intersections Release 4.1c

Intersection Delay = 12.4 (sec/veh) Intersection LOS = B

Stacy D. Muise coute 214 from Soeys to Superstore aseline

hone: -Mail:

Fax:

OPERATIONAL ANALYSIS

lnalyst: gency/Co.: Date Performed:

Stacy D. Muise

O'Halloran Campbell Consultant

07/05/2002

Analyst: Stacy D. Muise Inter.: Elmsdale S. C./Route 214 Agency: O'Halloran Campbell Consultant Area Type: All other areas 07/05/2002 Date: Jurisd: NSTPW Period: PM Peak (4:00 to 5:00 PM) Year : 2022 - Horizon Excluding Devs. Project ID: Highway 102/Route 214 Interchange Area Traffic Impact Study E/W St: Rte 214 N/S St: Elmsdale Shopping Centre SIGNALIZED INTERSECTION SUMMARY Eastbound Westbound Northbound Southbound T L R L T L T R L Т R No. Lanes 1 1 0 O 1 1 O 0 o 1 1 LGConfig L T T R L R 285 651 Volume 468 189 232 245 Lane Width 12.1 12.1 15.7 12.1 15.7 15.7 RTOR Vol 95 120 Duration 0.25 Area Type: All other areas Signal Operations Phase Combination 1 4 6 EB Left A A NB Left Thru A A Thru Right Right Peds X X Peds **VB** Left SB Left Thru A Thru Right A Right Peds X Peds B Right EB Right 3B Right WB Right Green 7.8 13.7 12.8 Yellow 4.5 4.5 3.0 All Red 1.4 1.4 1.9 Cycle Length: 51.0 secs Intersection Performance Summary Appr/ Lane Adj Sat Ratios Lane Group Approach lane Group Flow Rate rp Capacity ₹/c (B) g/C Delay LOS Delay LOS Eastbound 482 1768 0.71 0.57 13.5 В 1030 1792 0.72 0.57 10.3 В 11.3 В Westbound 619 2025 0.83 0.31 25.8 C 23.7 C 481 1573 0.21 0.31 13.4 Northbound Southbound 537 2000 0.55 0.27 17.3 16.6 В 1790 0.28 0.27 15.1 В Intersection Delay = 16.0 (sec/veh) Intersection LOS = B HCS2000: Signalized Intersections Release 4.1c Stacy D. Muise oute 214 from Soeys to Superstore aseline hone: Fax: -Mail: OPERATIONAL ANALYSIS nalyst: Stacy D. Muise gency/co.:

wate Performed:

O'Halloran Campbell Consultant

07/05/2002

Analyst: Stacy D. Muise Inter.: Elmsdale S. C./Route 214 Agency: O'Halloran Campbell Consultant Area Type: All other areas

Date: 07/05/2002

Jurisd: NSTPW

Year : 2022 - Horizon Including Devs.

Period: PM Peak (4:00 to 5:00 PM)

Project ID: Highway 102/Route 214 Interchange Area Transportation Study

E/W St: Rte 214

N/S St: Elmsdale Shopping Centre N/S St: Elmsdale Shopping Centre

-/						1471	, sc. E	TIMBUA	Te SHO	phrud	j cen	tre
			si	ĢNALI ZE	D IN	TERSE						
	East				boun	d	Nor	thbou	nd	Sou	thbo	und
	L ,	T	R	L	T	R	L	T	R	L	T	R
-No. Lanes	1	1	0		-		-					
LGConfig	L	Ť	U	0	1	1	0	0	0	_ 1	0	1
Volume		01		ء ا	T 94	R	1			L		R
Lane Width	12.1 1					339				391		443
RTOR Vol	12.1 1.	2.1		1 -		12.1				15.7		15.7
	ı			l		150	I		- 1			220
Duration	0.25		Area '	Type: A	11 0	ther	aroag					_
	••••					perat						
Phase Combi	nation :	1	2	3	4	֓֓֞֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓		5	6	7	<u> </u>	8
B Left	1	A	A	_	-	NB	Left	•	•	•		0
Thru	1	A	A				Thru					
Right							Right					
Peds	2	X	X			1	Peds					
7B Left						SB	Left	A				
Thru			A			1	Thru					
Right			A			l	Right	A				
Peds			X				Peds					
IB Right						EB	Right					
B Right						WB	Right					
Green		. 8	13.7			•		12.8				
Yellow		. 5	4.5					3.0				
ll Red	1.	. 4	1.4					1.9				
								Cvc	le Len	gth:	51.0	secs
		_In	tersec	tion P	erfo:	rmanc	e Summa	ary				
Appr/ Lane			Sat	Rat	ios		Lane (Group	App	roach		
ane Gro			Rate			_						
rp Capa	city	(:	8)	v/c	g/	C	Delay	LOS	Dela	y LOS		
Eastbound												
r* 482		176	A	1.27	0.	57	147 1	-				
10:		179	_	0.99	0.		147.2	F	20.0	_		
		117	2	0.55	0.:	5 /	37.3	D	78.3	E		
Westbound												
m												
619)	202	5	1.23	0.3	31	136.0	F	110.0	7 10		
481		157		0.43	0.3		14.8	B	110.0	J		
Northbound			•		•••		14.0					
П												
Southbound												
,I ₁ 537	ı	2000	0	0.93	0.2	27	41.7	n				
							,		33.5	C		
481	•	1790)	0.50	0.2	27	16.6	В				
Int	ersecti	on I	Delay	= 77.6	(86	c/vel	h) Ir	terse	ction	LOS	= E	
					,		,					
												 -
Ц	HCS2	000:	: Sign	alized	Inte	rseci	tions F	teleas	se 4.1c	3		
AL			_									
Stacy D. Mui	se											
oute 214 fr	om Soey	s to	Supe	rstore								
1)			_									
aseline												
aseline	•											
aseline	-											

nalyst: gency/Co.: vate Performed:

-Mail:

OPERATIONAL ANALYSIS

Stacy D. Muise O'Halloran Campbell Consultant 07/05/2002

APPENDIX F SIGNAL SETTINGS

```
TRACONEX TMP3 90 DATA BASE REPORTER
                                FILE C:\TNETJ\DATAB\ELMSOBEY.102
  EM # 2 CENTRAL Drop Name: ELMSDALE-SOBEYS
                                              Drop # 4
    This report printed: 13:27:20 08-10-2000
  (1) TOD CURRENT CALENDAR AND CLOCK
  KNEM
     CURRENT CALENDAR YEAR
  łĸ
                                         96
  ON CURRENT CALENDAR MONTH
                                         10
 DOM CURRENT DAY OF MONTH
     CURRENT HOUR OF DAY
                                         23
  IN CURRENT MINUTE
 RTC REAL TIME CLK RTC ON = 1 DST ON = 2
 SEC
    CURRENT SECOND
  OW DAY OF WEEK 1=SUNDAY
  V RESERVED - DO NOT EDIT
 COM 39=TMP390
             DO NOT EDIT
  PV REVISION 10A 2=B ETC DO NOT EDIT
  IN VERSION DISPLAY ONLY - DO NOT EDIT
 LAH CONTROLLER I.E. HIGH BYTE
 IEL CONTROLLER I.D. LOW BYTE
  1390 MODE, PAGE 0. PHASE 0 - OPTION SELECTION
 MNEN
                                        DATA
USE PHASES IN USE
                                        . . 6 . 4 . 21
  PEDESTRIAN - ENABLE CONCURRENT PED MOVE
                                        . . . . 4 . 2 ..
    FLASHING WALK
ARW ACTUATED REST IN WALK
    WALK CLEARANCE PROTECT
    DENSITY - ENABLES DENSITY OPERATION
   LAST CAR PASSAGE
VN1 VEHICLE TO NON-ACTUATED NO. 1
  PEDESTRIAN TO NON-ACTUATED NO. 1
    VEHICLE TO NON-ACTUATED NO. 2
PN2 PEDESTRIAM TO KON-ACTUATED NO. 2
FGN CANADA FAST PLASH GREEN
   SELECT LEFT TURN AMBER BLANK
   SELECT ANTI-BACKUP PHASES
(3) 390 MODE, PAGE 0. PHASES 1 TO 8 - PHASE TIMING
R i
                                       PK 1
                                              PH 2
                                                             PH 4
                                                                    PH S
42. MINIMUM GREEN INTERVAL
                                                                           PH G
                                                                                  PH 7
                                       2
                                                                    0
ILK WALK INTERVAL
                                                                           15
                                                                                         ٥
                                                     ٥
C PEDESTRIAN CLEARANCE
                                                                           0
                                                                                         Ð
                                              6
                                                                    Đ
 PASSAGE TIME (PRESET GAP)
                                       0.5
                                              0.5
                                                            0.5
                                                                    0.0
XI MAXIMUM GREEN NO. 1
                                                                           0.5
                                                                                  0.0
                                       20
                                                     ٥
                                                            30
X2 MAXIMUM GREEN NO. 2
                                                                           40
                                       40
                                              40
                                                     n
                                                            40
  YELLOW CLEARANCE
2
                                                                           40
                                       6.5
                                                            3.0
                                                                   3.0
  ALL RED CLEARANCE
                                                                                  3.0
                                      1.4
                                                     0.0
                                                            1.9
                                                                   0.0
RT RED REVERT MIN TIME
                                                                           1.4
                                                                                         0.0
                                      2.0
                                              2.0
                                                     2.0
                                                            2.0
                                                                   2.0
3) ACTUATIONS BEFORE ADDED INITIAL
                                                                           2.0
                                      0
                                              a
 SECS PER ACTUATION ADDED INITIAL
                                                                           o i
                                      0.0
                                             0.0
                                                            0.0
C. MAXIMUM ADDED INITIAL TIME
                                                                   0.0
                                                                           0.0
                                                                                  0.0
                                      0
                                                            ٥
IR TIME BEFORE REDUCTION
                                                                           ٥
                                                                                  0
                                                     ð
  TIME TO REDUCE TO MINIMUM GAP
  MINIMUM GAP
                                                                   1
                                                                                  1
                                      0.0
                                             0.0
                                                                   0.0
  CONDITIONAL MINIMUM
                                      0
                                                            Ô
D
```

TRACONEX TMP390 DATA BASE REPORTER

FILE C:\TNETJ\DATAB\ELMSOBBY.I02

This report printed: 13:27:20 2 CENTRAL Drop Name: ELMSDALE-SOBEYS 08-10-2000

Drop # 4

i	
	化电子电子电子电子电子电子电子电子电子电子电子电子电子电子电子电子电子电子电子
	IDL CONTROLLER I.D. LOW BYTE
0	
4.	VER
22	
39	CON 39=TMP390 DO NOT EDIT
	RSV RESERVED - DO NOT EDIT
LU	DOW DAY OF WEEK 1=SUNDAY
9	SEC CURRENT SECOND
	RTC REAL TIME CLK RTC ON = 1 DST ON = 2
7	MIN CURRENT MINUTE
233	HR CURRENT HOUR OF DAY
29	DOM CURRENT DAY OF MONTH
10	G MON CURRENT CALENDAR MONTH
96	₩ YR CURRENT CALENDAR YEAR
DATA	至
	(1) TOD CURRENT CALENDAR AND CLOCK

DATA

..6.4.21 . . . 4 . 2 .

PEDESTRIAN - ENABLE CONCURRENT PED MOVE

ARW ACTUATED REST IN WALK DED

USB

PHASES IN USE

FWK

FLASHING WALK

MEM

(2)390 MODE, PAGE 0, PHASE 0 - OPTION SELECTION

WALK CLEARANCE PROTECT

FERRE SATA STATE TO THE CONTRACTORS

П	•	٠,. =	Ţ.,			44.	40		שטכ	4-4Z	44-t	וגטע						ıĸ	Arr.	ור ו	ĽNG.	TWFF	יאזו	46					F	PAGE	- P	34/8	74	
Ц	3	TTR	TBR	MXI	S/A	ABA	RRT	RED	YEL	MX2	MX1	DS4	MCL	MLK	MIN	MNEM	(3)	11 11 11 11	ABU	LAB	FGN	PN2	VN2	PN1	TNA	LCP.	ζ.	a.m.	ARIS	FNK	משק '	USE	MOVEM	:
CONDITIONAL MINIMUM	MINIMUM GAP	TIME TO REDUCE TO MINIMUM GAP	TIME BEFORE REDUCTION	MAXIMUM ADDED INITIAL TIME	SECS PER ACTUATION ADDED INITIAL	ACTUATIONS BEFORE ADDED INITIAL	RED REVERT MIN TIME	ALL RED CL	XETTON C	MAXIMUM GREBN NO. 2 (NOT USED)	MAXIMUM GREEN NO. 1	·		WALK INTERVAL	MINIMUM GREEN INTERVAL		90 MODE, PAGE 0, PHASES 1 TO 8 - PHASE		SELECT ANTI-BACKUP PHASES	SELECT LEFT TURN AMBER BLANK	CANADA FAST FLASH GREEN	PEDESTRIAN TO NON-ACTUATED NO. 2	VEHICLE TO NON-ACTUATED NO. 2	PEDESTRIAN TO NON-ACTUATED NO. 1	. VEHICLE TO NON-ACTUATED NO. 1	LAST CAR PASSAGE	DENSITY - ENABLES DENSITY OPERATION	NALK CLEARANCE PROTECT	ACTUATED REST IN WALK	K FLASHING NALK	DEDESTRIAN - ENABLE CONCURRENT PED MOVE	E PHASES IN USE	EM .	
	0.0	ı	0	٥	0.0	0	2.0	1.4	4.5	40	20	0.5	0	0	7	PH 1	TIMING CRO	 	:		•	:				4					4.2.	6.4.21	DATA	
	0.0	בן	0	0	0.0	0	2.0	1.4	,A . 51	40	40	0.5	σ	7	7	PH 2	Q.C.	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	11 (1) (1) (1) (1) (1) (1) (1) (1) (1) (ert.	;1 ,	:	:	:	•	•	:			•	2.	21		
6 .	0.0	r S	0	0	0.0	0	2.0	0.0	3.0	0	0	0.0	0	0	0	PH 3			10 P. A. C.	\$25°	25.	6-25 6-65 6-65 6-65 6-65 6-65 6-65 6-65	- TO	چين ويسي							•			
	0.0	 -	0	0	0.0	Ö	2.0	1.9	3.0	40	30	0.5	σ	7	7	PH 4	1971	:= 左锋 ====:			(P. 60)	تکی تعمی	⊃ ^{≪?}	E _Z	* :			1	- - -	·	ļ			
))	<u>.</u>	0	0	0.0	0	2.0	0.0	3.0	0	0	0.0	0	0	0	S Hď		77 12 11 11 11 11 11 11 11 11	40	ر ک ے۔	\								<u>-ĉ</u>				M	
0	⊃ +	- 1	0	0	0.0	0	2.0	<u> </u>	4.5	40	40	0.5	0	0	15	рн 6	1	====\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	7/5	5										+ +				
0.0	> h	.	- (D	0.0		2.0	0.0	3.0	0	0	0.0	0	0	0	PH 7	4	#E 10 10 10 10 10 11 11	<i>Y</i> ,		16 / NO.	Ch. Cour	- Co	~ <5						-				
0.0) - -	, c	> ()	>		35%	0.0	3.0	0		0.0	0	0		9 Hd							a	•	T Region of the second	<								

APPENDIX G

LOS ANALYSES RESULTS WITH IMPROVEMENTS

Analyst: Stacy D. Muise

Inter.: Superstore/Park Rd/Route 214

Agency: O'Halloran Campbell Consultant Area Type: All other areas

Date: 07/05/2002 Jurisd: NSTPW
Period: PM Peak (4:00 to 5:00 pm) Year : 2022 - Option No. 14
Project ID: Highway 102/Route 214 Interchange Area Transportation Study
E/W St: Route 214 N/S St: Superstore DW?Park Road

N/S St: Superstore DW?Park Road

	Ea	stbou T	S ind R	[GNAL] W∈	ZED I	NTERSI	ECTION No	SUMM rthbo	ARY	So	uthbo	und	
No. Lanes LGConfig Volume Lane Width RTOR Vol	48	2 LT 135 15.7	0 R 63	Def 475 12.1	T 2 L TR 199 15.7	379	L 77 12.1	1 T 126 15.7	R 1 R 406 12.1 155	L 587 12.1	1 TR 17 13.1	R 0 131 35	

Duration	0.25	Area T	ype: All	Othor					J5 	- 1
			Signal	Other	areas					
Phase Combin	ation 1	2			rous					1.0
EB Left	P	-	3 4			5	6	7	8	
Thru	P			NB	Left	A	P			
Right					Thru	A				
Peds	P			- 1	Right	¬ А				
	X				Peds	X				
WB Left	P	A		SB	Left	A	A			
Thru	P	A			Thru	A	A			
Right		A			Right		A .			
Peds	X	X				A	A			
NB Right		P		- I - mm	Peds	X	X			
SB Right		-		EB	Right					
Freen	34.7	29.4		WB	Right		P			
Cellow	3.5	3.5				13.6	20.3			
All Red	0.5	-				3.5	3.5		3	V _A
	V.5	0.5				0.5	0.5			1
	_					Coral		h: 114.	0 -	N.
	In	tersect	ion Perf	ormanc	e Summa	ารช		174.	0 \$6	ecs
Appr/ Lane	Auj	Sac	Ratios		Lane G	roun	Appro	12.0h		
Lane Group		Rate			4	up	white	acii		

Lane	cane Group	Adj Sat Flow Rate	Rat	ios	Lane	Group	Appr	oach		
Grp	Capacity	(8)	V/C	g/C	Delay	LOS	Delay	LOS	-	
Eastbo	und									
LTR	894	2936	0.30	0.30	31.2	С	31.2	С		
Westbou	and									
PefL TR	716 1100	1537 1919	0.78 0.45	0.29 0.60	26.7 12.8	C B	20.2			
Northbo	was d				12.0	В	20.2	С		
T.	409	1200								
F	255	1229	0.22	0.33	27.7	C				
6		2137	0.55	0.12	49.8	D	32.0	С		
Southbo	637 ound	1545	0.44	0.41	24.5	Č		•		
Tr.	955	3483	0.72	0 22						
'R	563	1693	. —	0.33	39.9	D				
		2093	0.23	0.33	27.7	C	38.0	D		
-1	Intersect	ion Delay :	= 29.0	(sec/v	eh) Ir	nterse	ction I	Los = (C	

HCS2000: Signalized Intersections Release 4.1c

Stacy D. Muise oute 214 from Soeys to Superstore aseline

one: Mail:

Fax:

OPERATIONAL ANALYSIS

nalyst: ency/co.: Date Performed:

Stacy D. Muise O'Halloran Campbell Consultant 07/05/2002

Intersection: Area Type: Jurisdiction: Superstore/Park Rd/Route 214 All other areas

Area Type:

Turisdiction:

Analysis Year:

Project ID: Highway 102/Route 214 Interchange Area Transportation Study

East/West Street

North/South Street

Superstore DW?Park Road

Π					VOLUM	E DATA	¹³						
П	Ea L	stbou			stbou		No	rthbo	und	So	uthbo	und	1
779	"	T	R	L	T	R	L	T	R	L	T	R	1
Volume 4 Heavy Veh PHF 7K 15 Vol 11 Ln Vol	48 0 0.85 14	135 8 0.85 40	63 0 0.90 18	475 18 0.85 140	199 3 0.85 59	379 2 0.90 105	77 0 0.85 23	126 0 0.90 35	406 5 0.90 113	587 1 0.85 173	17 0 0.85 5	131 2 0.90 36	-
Grade Ideal Sat ParkExist umPark		0 1900		1900	0 1900		1900	0 1900	1900	1900	0 1900		
o. Lanes LGConfig Tane Width TOR Vol dj Flow %InSharedLn	0	2 LTI 15.7 268	0 15	0 DefI 12.1 559		0	1 L 12.1 91	1 T 15.7	1 R 12.1 155 279	2 L 12.1 691	1 TR 13.1	0 35	
Prop LTs rop RTs eds Bikes Buses %InProtPhase uration	0	0.20 198 0		0.0		0.0	0	0.00 000 1 0	1.000	0.	0.00 843 0	ĺ	

OPERATING	PARAMETERS

	Eastbound	Westbound	Northbound	Southbound
	L T R	L T R	L T R	L T R
Init Unmet Triv. Type Tit Ext. Factor Lost Time Fit of g Min g	0.0	0.0 0.0	0.0 0.0 0.0	0.0 0.0
	3	2 3	3 3 3	3 3
	3.0	3.0 3.0	3.0 3.0 3.0	3.0 3.0
	1.000	0.484	1.000	1.000
	2.0	2.0 2.0	2.0 2.0 2.0	2.0 2.0
	2.0	2.0 2.0	2.0 2.0 2.0	2.0 2.0

Sec.			•				•		Į.			
-					_PHASE	DATA						
i la	se Combination	1	2	3	4			5	6	7	8	
EB	Left Thru Right Peds	P P X				NB	Left Thru Right Peds	A A A X	P			
WB	Left Thru Right Peds	P P X	A A A X			SB	Left Thru Right Peds	A A A X	A A A X			
K	Right		P			EB	Right					
Sa	Right					WB	Right		P			
Y=1	rom 3	34.7 3.5 3.5	29.4 3.5 0.5					13.6° 3.5 0.5	20.3 3.5 0.5			

Volume Adj		_							
	Eastbou	_ 1	Westboun	d	Northbo	und	l so	ıthbou	nd I
	L T	RL	T	RL		R	L	T	R
Volume, V	48 135	63 47	E 100	388 -			.	_	•
PHF	0.85 0.85	1	5 199 85 0.85	379 77		406	587	17	131
Adj flow	56 159			266 91	85 0.90			0.85	0.90
No. Lanes	0 2	0	0 2	0 91		279	691		107
Lane group	LT	R D	efL TR	L	1 1 T	1	2	1	0
Adj flow	268	55	9 500	91	_	R 279	L 691	TR	
Prop LTs	0.2	09 1.	000 0.00		000 0.00	2/3		127) 0.00	<u>, l</u>
Prop RTs	0.198		0.532		0.000	.000		843	٠
Saturation	Flow Rate	(see Eyhil	hi+ 16_7						ı
Saturation Ea	stbound	West	tbound	to deter	rmine th rthbound	e adj	ustmen	t fac	tors)_
LG	LTR	DefL	TR	L	r cimound T			thbou	nd
So	1900	1900	1900	1900	1900	R 1900	L 1900	TR	
Lanes O fW	2 0		2 0	1	1	1	2	1900 1	^
fHV	1.125	1.005	1.125	1.009	5 1.125	1.005	1.005	1.03	, 0
fG	0.955 1.000	0.847	0.976	1.000	n T'000	0.952	0.990	U 00:	3
fP	1.000	1.000 1	1.000	1.000	1.000	1.000	1.000	1 000	١
fBB	1.000	1.000 1	1 000	1.000	J 1.000	1.000	1.000	1 000	`
fA	1.00		1.00	1.000	1.000	1.000	1.000	1.000)
flu	0.95	-	1.00	1.00		1.00	1.00	1.00	
fRT	0.970	Ō	920	1.00	1.000	1.00	0.97	1.00	
fLT	0.781	0.950 1		0.644	1.000	v.03U	0.950	0.874	
Sec. fLpb	1 000	0.540					0.488	T.000	,
fRpb	1.000	1.000 1		1.000	1.000		1.000	1.000	1
S	2936		.000		1.000	1.000		1.000	
Sec.	2930	1537 1 874	.919	1229		1545	3483	1693	*
		CADAGE	TY AND L	OS NODES			1788		4.
		Lane Crow	TT BUD D	OS MORKS	HEET				i ii
Capacity Ana	lysis and	name atom	D Cabaci	T.V					
Capacity Ana		AQJ .	p Capaci Adj Sat	TY Flow	Gree	T	270 C		4
Appr/ La	ne Flo	adj w Rate F	p Capaci Adj Sat 'low Rate	Flow	Green Ratio		ane Gr		
Appr/ La	ne Flo	Aaj .	Adj Sat	Flow	Ratio	Cap	acity	v/c	
Appr/ La Mvmt Gr	ne Flo	adj w Rate F	Adj Sat 'low Rate	Flow Ratio		Cap	ane Gr acity (c)		
Appr/ La Mvmt Gr	ne Flo	adj w Rate F	Adj Sat 'low Rate	Flow Ratio	Ratio	Cap	acity	v/c	
Appr/ La Mvmt Gr Eastbound Prot Perm	ne Flo	adj w Rate F	Adj Sat 'low Rate	Flow Ratio	Ratio	Cap	acity	v/c	
Appr/ La Mvmt Gr Eastbound Prot Perm Left	ne Flo	adj w Rate F	Adj Sat 'low Rate	Flow Ratio	Ratio	Cap	acity	v/c	
Appr/ La Mvmt Gr Eastbound Prot Perm Left Prot	ne Flo	adj w Rate F	Adj Sat 'low Rate	Flow Ratio	Ratio	Cap	acity	v/c	
Appr/ La Mvmt Gr Eastbound Prot Perm Left Prot Perm	ne Flo	Maj W Rate F (V)	Adj Sat low Rate (s)	Flow Ratio	Ratio	Cap	acity	v/c	
Appr/ La Mvmt Gr Eastbound Prot Perm Left Prot Perm Thru LT	ne Flo	Maj W Rate F (V)	Adj Sat 'low Rate	Flow Ratio	Ratic	Cap	acity (c) ———	v/c Rati	
Appr/ La Mvmt Gr Eastbound Prot Perm Left Prot Perm Thru LT Right	ne Flo	Maj W Rate F (V)	Adj Sat low Rate (s)	Flow Ratio (v/s)	Ratio	Cap	acity	v/c	
Appr/ La Mvmt Gr Eastbound Prot Perm Left Prot Perm Thru LT Right	ne Floroup	w Rate F	Adj Sat low Rate (s)	Flow Ratio (v/s)	Ratic	Cap	acity (c) ———	v/c Rati	
Appr/ La Mvmt Gr Eastbound Prot Perm Left Prot Perm Thru LT Right	ne Floroup	w Rate F (v)	Adj Sat low Rate (s) 2936	Flow Ratio (v/s) 0.09	0.30	8: 3 4:	acity (c) ———	v/c Rati 0.30	
Appr/ La Mvmt Gr Mvmt Gr Prot Perm Left Prot Perm Thru LT Right Jestbound Prot Perm Left Der	ne Floroup R 26	Mate F (v)	Adj Sat low Rate (s)	Flow Ratio (v/s)	0.30 0.29 0.30	8: 3 4: 4 2:	acity (c) 	v/c Rati 0.30 0.65	
Appr/ La Mvmt Gr Mvmt Gr Prot Perm Left Prot Perm Thru LT Right Westbound Prot Perm Left Der Prot	ne Floroup	Mate F (v)	Adj Sat low Rate (s) 2936	Flow Ratio (v/s) 0.09	0.30	8: 3 4: 4 2:	acity (c) 	v/c Rati 0.30	
Appr/ La Mvmt Gr Mvmt Gr Prot Perm Left Prot Perm Thru LT Right Jestbound Prot Perm Left Der Prot Perm	ne Floroup R 26 EL 55	W Rate F (v)	Adj Sat low Rate (s) 2936	Flow Ratio (v/s) 0.09	0.30 0.29 0.30	8: 3 4: 4 2:	acity (c) 	v/c Rati 0.30 0.65	
Appr/ La Mvmt Gr Mvmt Gr Prot Perm Left Prot Perm Thru LT Right Jestbound Prot Perm Left Der Perm Left Der Prot Perm	ne Floroup R 26	W Rate F (v)	Adj Sat low Rate (s) 2936	Plow Ratio (v/s) 0.09 0.19 0.30	0.30 0.29 0.29	89 3 49 4 26 71	acity (c) 	0.30 0.65 1.00 0.78	
Appr/ La Mvmt Gr Mvmt Gr Eastbound Prot Perm Left Prot Perm Thru LT Right Westbound Prot Perm Left Der Perm Left Der Right Right Right	ne Floroup R 26 EL 55	W Rate F (v)	Adj Sat low Rate (s) 2936 1537 874	Flow Ratio (v/s) 0.09	0.30 0.29 0.30	89 3 49 4 26 71	acity (c) 	v/c Rati 0.30 0.65	
Appr/ La Mvmt Gr Mvmt Gr Prot Perm Left Prot Perm Thru LT Right Vestbound Prot Perm Left Der Perm Left Der Right Vestbound	ne Floroup R 26 EL 55	W Rate F (v)	Adj Sat low Rate (s) 2936 1537 874	Plow Ratio (v/s) 0.09 0.19 0.30	0.30 0.29 0.29	89 3 49 4 26 71	acity (c) 	0.30 0.65 1.00 0.78	
Appr/ La Mvmt Gr Mvmt Gr Mvmt Gr Eastbound Prot Perm Left Prot Perm Thru LT Right Westbound Prot Perm Left Der Perm Thru TR Right Orthbound Prot	ne Floroup R 26 EL 55	W Rate F (v)	Adj Sat low Rate (s) 2936 1537 874	Plow Ratio (v/s) 0.09 0.19 0.30	0.30 0.29 0.29	89 3 49 4 26 71	acity (c) 	0.30 0.65 1.00 0.78	
Appr/ La Mvmt Gr Mvmt Gr Mvmt Gr Prot Perm Left Prot Perm Thru LT Right Westbound Prot Perm Left Der Perm Thru TR Right Orthbound Prot Perm	ne Floroup R 26 EL 55	W Rate F (v) 58 66 69	Adj Sat low Rate (s) 2936 1537 874	Flow Ratio (v/s) 0.09 0.19 0.30	0.30 0.29 0.29	89 3 49 4 26 71	acity (c) 	0.30 0.65 1.00 0.78	
Appr/ La Mvmt Gr Mvmt Gr Mvmt Gr Eastbound Prot Perm Left Prot Perm Thru LT Right Westbound Prot Perm Left Der Perm Thru TR Right Orthbound Prot	ne Floroup R 26 EL 55	W Rate F (v) 58 66 69	Adj Sat low Rate (s) 2936 1537 874	Plow Ratio (v/s) 0.09 0.19 0.30	0.30 0.29 0.29	89 3 49 4 26 71	acity (c) 	0.30 0.65 1.00 0.78	
Appr/ La Mvmt Gr Mvmt Gr Mvmt Gr Mvmt Gr Prot Perm Left Prot Perm Thru LT Right Vestbound Prot Perm Left Der Perm Thru TR Right Orthbound Prot Perm Left L Prot Perm Left L Prot Perm	ne Floroup R 26 EL 55	W Rate F (v) 58 66 69	Adj Sat low Rate (s) 2936 1537 874	Flow Ratio (v/s) 0.09 0.19 0.30	0.30 0.29 0.30 0.29	89 3 49 4 26 71	acity (c) 	0.30 0.65 1.00 0.78	
Appr/ La Mvmt Gr Mvmt Gr Mvmt Gr Mvmt Gr Prot Perm Left Prot Perm Left Der Perm Left Der Perm Left Der Perm Left Left Prot Perm Thru TR Right Orthbound Prot Perm Left L Prot Perm Left L Prot Perm	ne Floroup R 26 25 55 50	w Rate F (v) 58 66 69	Adj Sat low Rate (s) 2936 1537 874	Plow Ratio (v/s) 0.09 0.19 0.30 0.00	0.30 0.29 0.30 0.29	89 3 49 4 26 71	acity (c) 	0.30 0.65 1.00 0.78	
Appr/ La Mvmt Gr Mvmt Gr Mvmt Gr Prot Perm Left Prot Perm Thru LT Right Vestbound Prot Perm Left De: Prot Perm Thru TR Right Orthbound Prot Perm Left L Prot Perm Left L Prot Perm Thru TR Right Orthbound	ne Floroup R 26 FL 55 50 91	W Rate F (v) 58 66 69	Adj Sat low Rate (s) 2936 1537 874 1919	Plow Ratio (v/s) 0.09 0.19 0.30 0.00	0.30 0.29 0.30 0.29 0.60	89 3 49 4 26 71	acity (c) 	0.30 0.65 1.00 0.78	
Appr/ La Mvmt Gr Mvmt Gr Mvmt Gr Mvmt Gr Prot Perm Left Prot Perm Thru LT Right Vestbound Prot Perm Left De: Prot Perm Thru TR Right Orthbound Prot Perm Left L Prot Perm Left L Prot Perm Left L Prot Perm Corthbound Prot Perm Left L Prot Perm Corthbound	ne Floroup R 26 25 55 50	W Rate F (v) 58 66 69	Adj Sat low Rate (s) 2936 1537 874	Plow Ratio (v/s) 0.09 0.19 0.30 0.00	0.30 0.29 0.30 0.29	89 3 49 4 26 71	acity (c) 	0.30 0.65 1.00 0.78 0.45	
Appr/ La Mvmt Gr Mvmt Gr Mvmt Gr Prot Perm Left Prot Perm Thru LT Right Vestbound Prot Perm Left De: Prot Perm Thru TR Right Orthbound Prot Perm Left L Prot Perm Thru TR Right Orthbound Prot Perm Left L Prot Perm Thru T Right R Outhbound Prot	ne Floroup R 26 FL 55 50 91	W Rate F (v) 58 66 69	Adj Sat low Rate (s) 2936 1537 874 1919	Plow Ratio (v/s) 0.09 0.19 0.30 0.00	0.30 0.29 0.30 0.29 0.60	89 3 49 4 26 71 11	acity (c) 	0.30 0.65 1.00 0.78 0.45	
Appr/ La Mvmt Gr Mvmt Gr Mvmt Gr Mvmt Gr Prot Perm Left Prot Perm Thru LT Right Vestbound Prot Perm Left Der Perm Thru TR Right Orthbound Prot Perm Left L Prot Perm Thru TR Right Orthbound Prot Perm Left L Prot Perm Thru T Right R Outhbound Prot Perm	ne Floroup R 26 EL 29 26 50 91 144 279	W Rate F (v) 68 69 60	Adj Sat low Rate (s) 2936 1537 874 1919 1229 2137 1545 3483	Plow Ratio (v/s) 0.09 0.19 0.30 0.00 0.07 0.18 0.14	0.30 0.29 0.30 0.29 0.60	89 3 49 4 26 71 11	acity (c) 	0.30 0.65 1.00 0.78 0.45	
Appr/ La Mvmt Gr Mvmt Gr Mvmt Gr Mvmt Gr Prot Perm Left Prot Perm Left De: Perm Left De: Prot Perm Thru TR Right Orthbound Prot Perm Left L Prot Perm Thru TR Right Orthbound Prot Perm Left L Prot Perm Thru T Right R Outhbound Prot Perm Left L Prot Perm Thru T Right R Outhbound Prot Perm Left L	ne Floroup R 26 FL 29 26 55 50 91 144 279 478	Adj w Rate F (v)	Adj Sat low Rate (s) 2936 1537 874 1919	Plow Ratio (v/s) 0.09 0.19 0.30 0.00	0.30 0.29 0.30 0.29 0.60 0.33	89 3 49 4 26 71 11 40 25 63 74 21	acity (c) 	0.30 0.65 1.00 0.78 0.45	
Appr/ La Mvmt Gr Mvmt Gr Mvmt Gr Mvmt Gr Prot Perm Left Prot Perm Left Der Perm Left Der Perm Thru TR Right Orthbound Prot Perm Left L Prot Perm Thru TR Right Orthbound Prot Perm Left L Prot Perm Thru TR Right R Outhbound Prot Perm Left L Prot Perm Thru TR Right R Outhbound Prot Perm Left L Prot Perm Left L Prot	ne Floroup R 26 EL 29 26 50 91 144 279 478 213	Adj w Rate F (v)	Adj Sat low Rate (s) 2936 1537 874 1919 1229 2137 1545 3483	Plow Ratio (v/s) 0.09 0.19 0.30 0.00 0.07 0.18 0.14	0.30 0.29 0.30 0.29 0.60	89 3 49 4 26 71 11	acity (c) 	0.30 0.65 1.00 0.78 0.45	
Appr/ La Mvmt Gr Mvmt Gr Mvmt Gr Mvmt Gr Mvmt Gr Prot Perm Left Prot Perm Left De: Perm Left De: Prot Perm Thru TR Right Orthbound Prot Perm Left L Prot Perm Thru T Right R Outhbound Prot Perm Left L Prot Perm Thru T Right R Outhbound Prot Perm Left L Prot Perm Left L Prot Perm	ne Floroup R 26 29 26 55 50 91 144 279 478 213 693	Mady w Rate F (v)	Adj Sat low Rate (s) 2936 1537 874 1919 1229 2137 1545 3483	Plow Ratio (v/s) 0.09 0.19 0.30 0.00 0.07 0.18 0.14	0.30 0.29 0.30 0.29 0.60 0.33	89 3 49 4 26 71 11 40 25 63 74 21	acity (c) 	0.30 0.65 1.00 0.78 0.45	
Appr/ La Mvmt Gr Mvmt Gr Mvmt Gr Mvmt Gr Prot Perm Left Prot Perm Left De: Prot Perm Thru TR Right Outhbound Prot Perm Thru T Right R Outhbound Prot Perm Thru T Right R Outhbound Prot Perm Thru T Right R Outhbound Prot Perm Left L Prot Perm Thru T Right R Outhbound Prot Perm Left L Prot Perm Thru T Right R Outhbound Prot Perm Left L Prot Perm Left L Prot Perm	ne Floroup R 26 EL 29 26 50 91 144 279 478 213	Adj w Rate F (v)	Adj Sat low Rate (s) 2936 1537 874 1919 1229 2137 1545 3483	Plow Ratio (v/s) 0.09 0.19 0.30 0.00 0.07 0.18 0.14	0.30 0.29 0.30 0.29 0.60 0.33 0.12 0.41 0.213 0.119 0.33	89 3 49 4 26 71 11 40 25 63 74 21 95	acity (c) 	0.30 0.65 1.00 0.78 0.45 0.22 0.55 0.44 0.64 1.00 0.72	
Appr/ La Mvmt Gr Mvmt Gr Mvmt Gr Mvmt Gr Mvmt Gr Prot Perm Left Prot Perm Left De: Perm Left De: Prot Perm Thru TR Right Orthbound Prot Perm Left L Prot Perm Thru T Right R Outhbound Prot Perm Left L Prot Perm Thru T Right R Outhbound Prot Perm Left L Prot Perm Left L Prot Perm	ne Floroup R 26 29 26 55 50 91 144 279 478 213 693	Adj w Rate F (v)	Adj Sat low Rate (s) 2936 1537 874 1919 1229 2137 1545 3483 1788	Plow Ratio (v/s) 0.09 0.19 0.30 0.00 0.07 0.18 0.14	0.30 0.29 0.30 0.29 0.60 0.33	89 3 49 4 26 71 11 40 25 63 74 21	acity (c) 	0.30 0.65 1.00 0.78 0.45	
Appr/ La Mvmt Gr Mvmt Gr Mvmt Gr Mvmt Gr Prot Perm Left Prot Perm Left De: Prot Perm Thru TR Right Outhbound Prot Perm Thru T Right R Outhbound Prot Perm Left L Prot Perm Left L Prot Perm Left L Prot Perm	ne Floroup R 26 25 26 55 50 91 144 279 478 213 693	Adj w Rate F (v)	Adj Sat low Rate (s) 2936 1537 874 1919 1229 2137 1545 3483 1788	Plow Ratio (v/s) 0.09 0.19 0.30 0.07 0.07 0.18 0.14 0.12	0.30 0.29 0.30 0.29 0.60 0.33 0.12 0.41 0.213 0.119 0.33	89 3 49 4 26 71 11 40 25 63 74 21 95	acity (c) 	0.30 0.65 1.00 0.78 0.45 0.22 0.55 0.44 0.64 1.00 0.72	

Appi Lane	<u> </u>	tios	Unf Del	Prog Adj	Lane Grp	Increm Factor		Res Del	Lane G	roup	Appro	ach
Grp	v/c	g/C	đ1	Fact	Cap	k	d2	d3	Delay	LOS	Delay	LOS
East	bound								<u> </u>			
LTR	0.30	0.30	30.4	1.000	894	0.50	0.9	0.0	31.2	С	31.2	c
West	bound											
	0.78	0.29	22.6	1.058		0.33	2.8	0.0	26.7	С		
TR	0.45	0.60	12.7	1.000	1100	0.11	0.1	0.0	12.8	В	20.2	C
Nort	hbound											
L T	0.22 0.55	0.33 0.12	27.4 47.3	1.000 1.000	255	0.11 0.15	0.3	0.0	27.7 49.8	C D	32.0	С
R	0.44 hbound	0.41	24.0	1.000	637	0.11	0.5	0.0	24.5	č	32.0	
L	0.72	0.33	37.1	1.000		0.28	2.7	0.0	39.9	D		
TR	0.23	0.33	27.5	1.000	563	0.11	0.2	0.0	27.7	C	38.0	D

Intersection delay = 29.0 (sec/veh) Intersection LOS = C Errors exist. See bottom of text report.

> SUPPLEMENTAL PERMITTED LT WORKSHEET for exclusive lefts

Lot excrusive telts	3"				
Input					
		EB	WB	NB	SB
Cycle length, C	sec				, J. D.
Total actual green time for LT lane group, G (s)			68.1	37.9	37.9
I PLICULAGE DELMICTED Green time for in lone and	G(s)		34.7		13.6
I PERTONIA CALGOCATE ULTERNI EIMA. AA 741	3(-,		34.7	37.0	13.6
"Number of lanes in LT lane group at			1	1	
Number of lanes in opposing approach we			2	i	1
Figure Control of the			559	91	
Proportion of LT in LT lane group bim					691
Proportion of LT in Opposing flow Dime			0.21		1.000
adjusted Opposing flow rate. Vo /wek/h/				0.00	
Those time for LT lane group, +t.			268	127	140
Computation			4.00	4.00	4.00
T volume per cycle, LTC=VLTC/3600			17 70		
Upposing lane util, factor fine		1.00	17.70	2.88	21.88
"Opposing flow, Volc=Voc/(3600/No) fixed /	<u>م</u> ،	1.00		1.00	
			4.47		4.43
Lipposing Diatoon ratio, Rno (refer while to the			0.0	0.0	0.0
- ELACATING AGENE VERTO' DEDEWAR JPD4V/4V/4V/4/			1.00		
-79/ (995 AAULDIC CID-4.5.6.7.8)			0.70	0.67	
u=g-gq if gq>=gf, or = g-gf if gq <gf< td=""><td></td><td></td><td>2.74</td><td>1.78</td><td>4.47</td></gf<>			2.74	1.78	4.47
[-max(gq-qr)/2,0)			31.96	36.12	9.13
PTHo=1-PLTo			1.37		
PL*=PLT[1+(N-1)g/(gf+gu/EL1+4.24)]			0.79		1.00
L1 (refer to Exhibit C16-3)			1.00	1.00	2.32
L2=Max((1-Ptho**n)/Plto, 1.0)			1.70	1.48	1.50
fmin=2(1+PL)/g or fmin=2(1+P1)/g			1.32		
gdiff=max(gq-gf,0)			0.12	0.11	0.49
m = (af/a) + (m/a)/(3+pr/mr)				0.00	
m=[gf/g]+[gu/g]/[1+PL(EL1-1)], (min=fmin;max=1.00	0)				
lt=fm=[gf/g]+[gu/g]/[1+PL(EL1-1)]+[gdiff/g]/[1+PI or flt=[fm+0.91(N-1)]/N**	L(EL2-	1)],(1	Emin<=f	m<=1.(001
Left-turn adjustment, fLT		•			•
ealasement, ifi			0.540	0.644	0.488

or special case of single-lane approach opposed by multilane approach, see text.

* If Pl>=1 for shared left-turn lanes with N>1, then assume de-facto

left-turn lane and redo calculations.
For permitted left-turns with multiple exclusive left-turn lanes, flt=fm. or special case of multilane approach opposed by single-lane approach or when gf>gq, see text.

> SUPPLEMENTAL PERMITTED LT WORKSHEET for shared lefts

```
WB
                                                                     NB
                                                                            SR
Cycle length, C
                                                    sec
Total actual green time for LT lane group, G (s)
Effective permitted green time for LT lane group, g(s) 34.7
opposing effective green time, go (s)
Number of lanes in LT lane group, N
                                                         2
Number of lanes in opposing approach, No
Adjusted LT flow rate, VLT (veh/h)
                                                         56
Proportion of LT in LT lane group, PLT
                                                         0.209 0.000 0.000 0.000
proportion of LT in opposing flow, PLTo
                                                         0.00
Adjusted opposing flow rate, Vo (veh/h)
                                                         500
Lost time for LT lane group, tL
                                                         4.00
 computation
LT volume per cycle, LTC=VLTC/3600
                                                         1.77
bpposing lane util. factor, fluo
                                                         1.00
                                                               0.95 1.00 1.00
Opposing flow, Volc=VoC/[3600(No)fLUo] (veh/ln/cyc)
                                                        7.92
#f=G[exp(- a * (LTC ** b))]-t1, gf<=g
                                                         5.2
poposing platoon ratio, Rpo (refer Exhibit 16-11)
opposing Queue Ratio, qro=Max[1-Rpo(go/C),0]
                                                         0.40
gq, (see Exhibit C16-4,5,6,7,8)
                                                        3.40
 ju=g-gq if gq>=gf, or = g-gf if gq<gf
                                                        29.52
=Max(gq-gf)/2,0)
                                                        0.00
PTHO=1-PLTO
                                                        1.00
PL*=PLT[1+(N-1)g/(gf+gu/EL1+4.24)]
                                                        0.53
FL1 (refer to Exhibit C16-3)
                                                        2.30
L2=Max((1-Ptho**n)/Plto, 1.0)
min=2(1+PL)/g or fmin=2(1+Pl)/g
                                                        0.09
gdiff=max(gq-gf,0)
                                                        0.00
fm=[gf/g]+[gu/g]/[1+PL(EL1-1)], (min=fmin;max=1.00)
                                                        0.65
lt=fm=[gf/g]+[gu/g]/[i+PL(ELi-1)]+[gdiff/g]/[1+PL(EL2-1)],(fmin<=fm<=1.00)
r flt=[fm+0.91(N-1)]/N**
Left-turn adjustment, fLT
                                                        0.781 0.915 1.000
```

or special case of single-lane approach opposed by multilane approach, ee text.

If P1>=1 for shared left-turn lanes with N>1, then assume de-facto left-turn lane and redo calculations.

* For permitted left-turns with multiple exclusive left-turn lanes, flt=fm. or special case of multilane approach opposed by single-lane approach or when gf>gq, see text.

```
SUPPLEMENTAL PEDESTRIAN-BICYCLE EFFECTS WORKSHEET Prmitted Left Turns
```

```
EB
                                                                 WB
Effective pedestrian green time, gp (s)
                                                                              SB
                                                                34.7
                                                                       37.9
                                                                             13.6
 pnflicting pedestrian volume, Vped (p/h)
                                                          0
                                                                0
                                                                      0
                                                                             n
 edestrian flow rate, Vpedg (p/h)
Cpedg
                                                          0.000 0.000 0.000 0.000
Opposing queue clearing green, gq (s)
                                                          3.40 2.74 1.78 4.47
Rff. ped. green consumed by opp. veh. queue, gq/gp
                                                          0.098 0.079 0.047 0.328
 Cpedu
                                                          0.000 0.000 0.000 0.000
 pposing flow rate, Vo (veh/h)
                                                          500
                                                                268
                                                                      127
OCCr
                                                          0.000 0.000 0.000 0.000
Number of cross-street receiving lanes, Nrec
                                                                      2
 mber of turning lanes, Nturn
                                                         1.000 1.000 1.000 1.000
Proportion of left turns, PLT
                                                         0.209 1.000 1.000 1.000
Proportion of left turns using protected phase, PLTA
                                                         0.000 0.000 0.000 0.000
 ft-turn adjustment, flpb
                                                         1.000 1.000 1.000 1.000
 rmitted Right Turns
Effective pedestrian green time, gp (s)
                                                         34.7
                                                               29.4
                                                                      13.6
Conflicting pedestrian volume, Vped (p/h)
inflicting bicycle volume, Vbic (bicycles/h)
                                                                0
                                                                      0
                                                                            0
                                                         O
                                                                0
                                                                      0
 edg
                                                                            0
OCCpeda
                                                         0.000 0.000 0.000 0.000
Effective green, g (s)
                                                         34.7 34.7 37.9 37.9
 licg
( |Cbicg
                                                         0.020 0.020 0.020 0.020
CCCr
                                                         0.000 0.000 0.000 0.000
Number of cross-street receiving lanes, Nrec
                                                         1
limber of turning lanes, Nturn
                                                         1.000 1.000 1.000 1.000
Froportion right-turns, PRT
                                                         0.198 0.532 1.000 0.843
```

__SUPPLEMENTAL UNIFORM DELAY WORKSHEET_

Cycle length, C 114.0 sec	EBLT	WBLT	NBLT	SBLT
Adj. LT vol from Vol Adjustment Worksheet, v v/c ratio from Capacity Worksheet, X Protected phase effective green interval, g (s) Opposing queue effective green interval, gq Unopposed green interval, gu Red time r=(C-g-gq-gu)		559 0.78 33.4 2.74 31.96 45.9		691 0.72 24.3 4.47 9.13 76.1
Protected ph. departure rate, Sp=s/3600 Permitted ph. departure rate, Sp=s/3600 XPerm XProt		0.16 0.427 0.26 1.49		0.19 0.968 0.74 2.55
Case Queue at beginning of green arrow, Qa Queue at beginning of unsaturated green, Qu Residual queue, Qr Uniform Delay, d1		5 4.09 7.55 0.00 22.6		5 10.46 15.46 0.00 37.1

DELAY/LOS WORKSHEET WITH INITIAL QUEUE

Appr/	Initial Unmet		Uniform	Delay		Initial	
Lane	Demand Q veh	Demand	Unadj. ds	Adj. d1 sec			Group Delay d sec

astbound

westbound

Northbound

Southbound

Intersection Delay	20.0	222			
The second of th	29.0	sec\ veu	Intersection LOS	C	

<u> </u>		BACK OF OUEUE W	ORKSHEET	
InCapacity low Ratio /c Ratio Grn Ratio I Factor F or PVG ltn Ratio rF2 Q1	Eastbound LTR 0.0 141 1900 0 2 0 1545 470 0.09 0.30 0.30 1.000 3 1.00 1.00 3.4 0.8 0.3	BACK OF QUEUE W Westbound DefL TR 0.0 0.0 559 500 1900 1900 0 2 0 1537 1919 716 1100 0.36 0.26 0.78 0.45 0.29 0.60 0.484 2 3 0.67 1.00 1.00 1.00 16.2 7.4 0.4 0.4 1.2 0.3	Northbound L T R 0.0 0.0 0.0 91 140 279 1900 1900 1900 1 1 1 1229 2137 1545 409 255 637 0.07 0.07 0.18 0.22 0.55 0.44 0.33 0.12 0.41 1.000 3 3 3 1.00 1.00 1.00 1.00 1.00 2.1 4.2 6.3 0.5 0.4 0.6	Southbound L TR 0.0 0.0 356 127 1900 1900 2 1 0 1795 1693 492 563 0.20 0.08 0.72 0.23 0.33 0.33 1.000 3 3 1.000 3 3 1.00 1.00 1.00 1.00 8.9 2.9 0.6 0.6
Average	0.3 3.8	1.2 0.3 17.5 7.7	0.1 0.4 0.5 2.2 4.6 6.8	1.4 0.2 10.3 3.1

, h						
Q Storage Q S Ratio]	
70th Percen	țile Output:	•	•		l	1
fB%	1.2	1.2 1.2	11.2 1.2	1.2	11212	1
BOQ	4.7	20.3 9.1	1.2 1.2 2.6 5.5	8.1	12.1 3.7	
85th Percent	țile Output:	•	ı		l	
fB%	1.5	1.5 1.5	1.6 1.6	1 5	1.5 1.6	1
BOQ QSRatio	5.8	25.6 11.8	3.5 7.2	10.5	15.6 4.8	
□90th Percent	tile Output:	•	1		•	
fB%	1.7	1.6 1.7	11.8 1.7	1 7	1.6 1.7	
BOQ QSRatio	6.5	27.4 12.9	1.8 1.7 3.9 7.9	11.5	16.9 5.3	
195th Percent	ile Output:	1	1			1
fB%	2.1	1.7 1.9	12020	10	1 0 0 0	
BOQ QSRatio	7.8	30.2 14.6	2.0 2.0 4.5 9.0	13.0	18.9 6.2	
98th Percent	ile Output:	1	ı	1		
fB%	2.4	2.0 2.3	2.5 2.4	2 2	2225	
BOQ QSRatio	9.0	34.2 17.4	5.6 11.0		2.2 2.5 22.2 7.6	
hI			•	,		ı

ERROR MESSAGES

West bound right is shared but does not move with the adjacent movement. West bound right is shared but does not move with the adjacent movement.

HCS2000: Signalized Intersections Release 4.1c Analyst: Stacy D. Muise Inter.: Southbound Ramp/Route 214 Agency: O'Halloran Campbell Consultant Area Type: All other areas 07/05/2002 Jurisd: NSTPW Period: PM Peak (4:00 to 5:00 PM) Year : 2022 - Option No. 14 Project ID: Highway 102/Route 214 Interchange Area Transportation Study E/W St: Route 214 N/S St: Southbound Ramp SIGNALIZED INTERSECTION SUMMARY Eastbound Westbound Northbound Southbound L T R L T R L T R L Т R No. Lanes Õ 2 0 1 0 0 0 O 1 1 LGConfig TRL т L Volume R 849 279 254 1308 148 Lane Width 124 12.1 12.1 14.1 12.1 RTOR Vol 12.1 100 30 Duration 0.25 Area Type: All other areas Signal Operations Phase Combination 1 5 6 8 EB Left NB Left Thru P Thru Right P Right Peds X Peds Left ΨB P A SB Left A Thru P A Thru Right Right Α Peds X X Peds NB Right EB Right БB Right WB Right Green 55.1 31.0 15.9 Yellow 3.5 3.5 3.5 All Red 0.5 0.5 0.5 Cycle Length: 114.0 Intersection Performance Summary secs Appr/ Lane Ādi Sat Ratios Lane Group Approach ane Group Flow Rate Capacity rp (g) V/C g/C Delay LOS Delay Los Tastbound ήR 1631 3375 0.70 0.48 30.1 C 30.1 C estbound 633 1727 0.45 0.79 6.9 A T 1560 1974 0.93 0.79 19.9 В 17.8 В orthbound buthbound 243 1743 0.67 0.14 53.8 ת 51.2 211 1516 0.49 0.14 47.1 D

(sec/veh)

Intersection LOS = C

Intersection Delay = 25.1

HCS2000: Signalized Intersections Release 4.1c

Stacy D. Muise

Route 214 from Soeys to Superstore

Baseline

Phone: E-Mail:

Fax:

OPERATIONAL ANALYSIS

Analyst:

Stacy D. Muise

Agency/Co.:

O'Halloran Campbell Consultant

Date Performed:

07/05/2002

Analysis Time Period: Intersection:

PM Peak (4:00 to 5:00 PM) Southbound Ramp/Route 214

Area Type:

All other areas

Jurisdiction:

NSTPW

Analysis Year:

2022 - Option No. 14

Project ID: Highway 102/Route 214 Interchange Area Transportation Study East/West Street

Route 214

North/South Street Southbound Ramp

VOLUME DATA

Eastbound T R 849 279 5 3 0.90 0.90 236 78	254 5 0.90	stbound T R	Northbo L T	und R	South L T	ound R 124	
849 279 5 3 0.90 0.90	254 5 0.90	1308			148 T	R 	
5 3 0.90 0.90	5	3	_			124	
_	71	0.90 363	n		0.90 41	7 0.90 34	
0 1900	1900	0 1900	of s	ts.	1900	1900	
0 2 0 TR 12.1	1 L 12.1	1 0 T 14.1	0 0	0	1 0 L 12.1	R	*
1142	282	1453			164	30 104	
0.000 0.174 0 0	1					1.000	Ť
0	0.0	0		is:	0	o	23
	0 2 0 TR 12.1 100 1142 0.000 0.174 0 0	1900 1900 0 2 0 1 TR 12.1 12.1 100 1142 282 0.000 0.174 0.0 0 0 0 0.0	1900	1900 1900 1900 0 2 0 1 1 0 0 0 0 12.1 12.1 14.1 12.1 14.1 14.1 14.1 14.1	1900 1900 1900 0 2 0 1 1 0 0 0 0 TR 12.1 12.1 14.1 1142 282 1453 0.000 0.174 0 0.000 0 0 0 0 0 0	1900 1900 1900	1900 1900 1900 1900 1900 1900 1900 1900

OPERATING PARAMETERS

П	L	stbou T	nd R	We L	stboui T	nd R	No:	rthbo T	und R	Sou L	thbo T	ound R
Arriv. Type	:	0.0 2 3.0		0.0 4 3.0	0.0 2 3.0			er III		0.0 3 3.0	110	0.0

I Factor Lost Time Ext of g Ped Min g	0.808 2.0 2.0	0.773 2.0 2.0 2.0 2.0		1.000 2.0 2.0 2.0 2.0
	105	PHASE DA	ATA	
Phase Comb	ination 1 2	3 4	5	6 47 8
EB Left Thru Right Peds	P P X	N	TB Left Thru Right Peds	
WB Left Thru Right Peds	P A P A	s	B Left A Thru Right A Peds	
NB Right		E	B Right	
SB Right	a e	w.	B Right	
Green Yellow All Red	55.1 31.0 3.5 3.5 0.5 0.5	*	15.9 3.5 0.5	Length: 114.0 secs
Volume Adju	Eastbound L T R 849 279 0.90 0.90 943 199 0 2 0	Westbound L T R 254 1308 0.90 0.90 282 1453 1 1 0	FURATION FLOW WO	Southbound L T R 148 124 0.90 0.90 164 104
Adj flow Prop LTs Prop RTs	TR 1142 0.000 0.174	L T 282 1453 1.000 0.000 0.000		1 0 1 L R 164 104
Saturation Eas		thibit 16-7 to Westbound	determine the ac	ljustment factors)
G So anes 0 W fHV fG P LBB fA	TR 1900 1900 2 0 1 1.005 0.956 0.95 1.000 1.00 1.00 1.00 1.00 0.95 0.95 0.95 1.00	T 1900 1 0 5 1.070 2 0.971 0 1.000 0 1.000 1.000 1.00 1.000 1.000	0 0 0 0	Southbound L R 1900 1900 1 0 1 1.005 1.005 0.962 0.935 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.850

Appr	fL; fR; Sec	pb	1.0 1.0 337 Analys	00 5	172 213 CA	7 1 PACI	1.000 1.000 1974 ITY AN	ND LO	s wor	RKS	HEE	т	1.00	0	1.000 1516
Prot		Appr/	Lane	. Fl	Adj ow Rate		Adj S Flow F	Sat Rate	Flow Rati	.0		Ratio 🕆	Capacity	y v/c) şa
Left Prot Perm Thru TR 1142 3375 0.34 0.48 1631 0.70 Right Westbound Prot 179 1727 0.10 0.307 530 0.34 Perm 103 213 0.48 0.483 103 1.00 Left L 282 0.79 633 0.45 Perm 105 0.79 633 0.45 Perm 17hru T 1453 1974 0.79 1560 0.93 Right Northbound Prot Perm Left L 164 1743 0.09 0.14 243 0.67 Perm Thru Right Southbound Prot Perm Left L 164 1743 0.09 0.14 243 0.67 Prot Perm Thru Right R 104 1516 0.07 0.14 211 0.49 Sum of flow ratios for critical lane groups, Yc = Sum (v/s) = 0.00 Total lost time per cycle, L = 0.00 sec ritical flow rate to capacity ratio,	Eas	Prot	<u>.</u>	<u> </u>				<u></u>				·	· · · · · · · · · · · · · · · · · · ·		
Thru TR Right Right Prot 179 1727 0.10 0.307 530 0.34 Left L 282 0.79 633 0.45 Perm 103 213 0.48 0.483 103 1.00 Left L 282 0.79 633 0.45 Perm Thru T 1453 1974 0.79 1560 0.93 Perm Left L 164 1743 0.09 0.14 243 0.67 Perm Thru Right Southbound Prot Perm Left L 164 1743 0.09 0.14 243 0.67 Prot Perm Thru Right Couthbound Prot Perm Thru Right Southbound Prot Perm Thru Right R 104 1516 0.07 0.14 211 0.49 Sum of flow ratios for critical lane groups, Yc = Sum (V/s) = 0.00 Total lost time per cycle, L = 0.00 sec ritical flow rate to capacity ratio, Xc = (Yc) (C)/(C-L) = 0.00 Control Delay and LOS Determination [ppr/ Ratios Unf Prog Lane Incremental Res Lane Group Approach Del Adj Grp Factor Del Del Grp V/c g/C dl Fact Cap k d2 d3 Delay LOS Delay LOS [astbound] TR 0.70 0.48 23.0 1.220 1631 0.50 2.1 0.0 30.1 C 30.1 C astbound L 0.45 0.79 23.8 0.274 633 0.11 0.4 0.0 6.9 A		Left													2
Westbound		Thru	TR		1142		3375	;	0.3	4		0.48	1631	0.70	
Perm		tbound Prot				5	1727		0.1	0		0.307	530 ⁼	0 34	
Perm		Left	L o				213					0.483	103	1.00	
Northbound Prot Perm Left Prot Perm Left Prot Perm Thru Right Southbound Prot Perm Left L	 }	Perm Thru	Т	:	1453		1974					0.79	1560	0.93	
Left Prot Perm Thru Right Southbound Prot Perm Left L 164 1743 0.09 0.14 243 0.67 Prot Perm Thru Right R 104 1516 0.07 0.14 211 0.49 Sum of flow ratios for critical lane groups, Yc = Sum (v/s) = 0.00 Total lost time per cycle, L = 0.00 sec ritical flow rate to capacity ratio, Xc = (Yc)(C)/(C-L) = 0.00 Control Delay and Los Determination Ppr/ Ratios Unf Prog Lane Incremental Res Lane Group Approach ane Del Adj Grp Factor Del Del Grp v/c g/C dl Fact Cap k d2 d3 Delay Los Delay Los astbound TR 0.70 0.48 23.0 1.220 1631 0.50 2.1 0.0 30.1 C 30.1 C estbound L 0.45 0.79 23.8 0.274 633 0.11 0.4 0.0 6.9 A	Nor	thbound	i				-						,		
Perm Thru Right Southbound Prot Perm Left L 164 1743 0.09 0.14 243 0.67 Prot Perm Thru Right R 104 1516 0.07 0.14 211 0.49 Sum of flow ratios for critical lane groups, Yc = Sum (v/s) = 0.00 Total lost time per cycle, L = 0.00 sec ritical flow rate to capacity ratio, Xc = (Yc)(C)/(C-L) = 0.00 Control Delay and LOS Determination ppr/ Ratios Unf Prog Lane Incremental Res Lane Group Approach ane Del Adj Grp Factor Del Del Grp v/c g/C dl Fact Cap k d2 d3 Delay LOS Delay LOS astbound TR 0.70 0.48 23.0 1.220 1631 0.50 2.1 0.0 30.1 C 30.1 C Lestbound L 0.45 0.79 23.8 0.274 633 0.11 0.4 0.0 6.9 A L 0.45 0.79 23.8 0.274 633 0.11 0.4 0.0 6.9 A L 0.93 0.79 9.5 1.200 1560 0.45 0.75 care care care care care care care care		Left	1		-			52					4	A.	
Southbound Prot Perm Left L Prot Perm Thru Right R 104 1516 0.07 0.14 211 0.49 Sum of flow ratios for critical lane groups, Yc = Sum (v/s) = 0.00 Total lost time per cycle, L = 0.00 sec ritical flow rate to capacity ratio, Xc = (Yc) (C)/(C-L) = 0.00 Control Delay and LOS Determination [Ppr/ Ratios Unf Prog Lane Incremental Res Lane Group Approach ane Del Adj Grp Factor Del Del Grp v/c g/c d1 Fact Cap k d2 d3 [astbound] TR 0.70 0.48 23.0 1.220 1631 0.50 2.1 0.0 30.1 C 30.1 C sstbound L 0.45 0.79 23.8 0.274 633 0.11 0.4 0.0 6.9 A [1 0.93 0.79 25.1 1200 1560 0.445 0.79 25.0 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1		Perm Thru		(8)										Y	
Perm Left L 164 1743 0.09 0.14 243 0.67	Fout	thbound	l *				20 80						T.		
Prot Perm Thru Right R 104 1516 0.07 0.14 211 0.49 Sum of flow ratios for critical lane groups, Yc = Sum (v/s) = 0.00 Total lost time per cycle, L = 0.00 sec ritical flow rate to capacity ratio, Xc = (Yc)(C)/(C-L) = 0.00 Control Delay and LOS Determination Ppr/ Ratios Unf Prog Lane Tncremental Res Lane Group Approach ane Del Adj Grp Factor Del Del Grp v/c g/c dl Fact Cap k d2 d3 Delay LOS Delay LOS Delay LOS [astbound] TR 0.70 0.48 23.0 1.220 1631 0.50 2.1 0.0 30.1 C 30.1 C estbound Delay LOS Delay		Perm Left	Ŀ	1	.64		1743		0.09	•		0.14	243	0.67	
Right R 104 1516 0.07 0.14 211 0.49 sum of flow ratios for critical lane groups, Yc = Sum (v/s) = 0.00 Total lost time per cycle, L = 0.00 sec ritical flow rate to capacity ratio, Xc = (Yc)(C)/(C-L) = 0.00 Control Delay and LOS Determination ppr/ Ratios Unf Prog Lane Incremental Res Lane Group Approach ane Del Adj Grp Factor Del Del Grp v/c g/C d1 Fact Cap k d2 d3 Delay LOS astbound Delay LOS Delay LOS astbound Delay LOS Delay LOS Delay LOS astbound Delay LOS Delay LOS Delay LOS Delay LOS astbound Delay LOS Del]]	Perm						**				***	213	0.07	7E 7E
ritical flow rate to capacity ratio,	F	Right	30											0.49	
Control Delay and LOS Determination Ppr/ Ratios Unf Prog Lane Incremental Res Lane Group Approach ane Del Adj Grp Factor Del Del Grp V/c g/c d1 Fact Cap k d2 d3 Delay LOS astbound TR 0.70 0.48 23.0 1.220 1631 0.50 2.1 0.0 30.1 C 30.1 C estbound L 0.45 0.79 23.8 0.274 633 0.11 0.4 0.0 6.9 A 0.93 0.79 9.5 1.200 1560 0.45 0.5		UDC	CTILLE	net ca	CIE.	. =	43 (3/)	500							es :
Grp v/c g/c d1 Fact Cap k d2 d3 Delay LOS Delay LOS [astbound] TR 0.70 0.48 23.0 1.220 1631 0.50 2.1 0.0 30.1 C 30.1 C estbound L 0.45 0.79 23.8 0.274 633 0.11 0.4 0.0 6.9 A [1 0.93 0.79 9.5 1.200 1560 0.45 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.	Cont	rol De	lay and	d Los	Determ	inat	ion							×	
TR 0.70 0.48 23.0 1.220 1631 0.50 2.1 0.0 30.1 C 30.1 C estbound L 0.45 0.79 23.8 0.274 633 0.11 0.4 0.0 6.9 A	Louis	(-)		ner	Adj	Grp) Fa	ctor	Del		Del		<u> </u>		
L 0.45 0.79 23.8 0.274 633 0.11 0.4 0.0 6.9 A	ast	bound			79	Self. C		<u> </u>	-				-	<u> </u>	100 To 10
L 0.45 0.79 23.8 0.274 633 0.11 0.4 0.0 6.9 A			0.48	23.0	1.220	163	1 0.	50	2.1		0.0	30.3	r c	30.1	C
0.93 0.79 9.5 1.200 1560 0.45 8.5 0.0 19.9 B 17.8 B		0.45	0.79 0.79	23.8 9.5					0.4 8.5					17.8	B F

```
southbound
       0.67 0.14
                   46.6
                         1.000 243
                                      0.25
                                             7.2
                                                   0.0
                                                         53.8
                                                                      51.2
                                                                             D
                   45.3
             0.14
                         1.000 211
                                      0.11
                                             1.8
                                                   0.0
                                                         47.1
           Intersection delay = 25.1
                                       (sec/veh)
                                                   Intersection LOS = C
                        SUPPLEMENTAL PERMITTED LT WORKSHEET
                                for exclusive lefts
 Input
                                                          EB
                                                                WB
 Cycle length, C
                                                                             SB
                                             114.0
                                                     sec
 Total actual green time for LT lane group, G (s)
 Effective permitted green time for LT lane group, g(s)
                                                                90.1
 Opposing effective green time, go (s)
                                                                55.1
 Number of lanes in LT lane group, N
                                                                55.1
 Number of lanes in opposing approach, No
                                                                1
 Adjusted LT flow rate, VLT (veh/h)
                                                                2
 Proportion of LT in LT lane group, PLT
                                                                282
 Proportion of LT in opposing flow, PLTo
                                                                1.000
 Adjusted opposing flow rate, Vo (veh/h)
                                                                0.00
Lost time for LT lane group, tL
                                                                1142
                                                                4.00
 Computation
 LT volume per cycle, LTC=VLTC/3600
Ppposing lane util. factor, fLUo
                                                                8.93
                                                         1.00
opposing flow, Volc=VoC/[3600(No)fLUo] (veh/ln/cyc)
                                                                0.95
gf=G[exp(- a * (LTC ** b))]-tl, gf<=g
                                                                19.03
Opposing platoon ratio, Rpo (refer Exhibit 16-11)
                                                                0.0
 opposing Queue Ratio, qro=Max[1-Rpo(go/C),0]
                                                                0.67
gq, (see Exhibit C16-4,5,6,7,8)
                                                                0.68
gu=g-gq if gq>=gf, or = g-gf if gq<gf
                                                               29.19
 1=Max(gq-gf)/2,0)
                                                               25.91
PTH0=1-PLT0
                                                               14.59
PL*=PLT[1+(N-1)g/(gf+gu/EL1+4.24)]
                                                               1.00
FL1 (refer to Exhibit C16-3)
                                                               1.00
L2=Max((1-Ptho**n)/Plto, 1.0)
                                                               4.02
fmin=2(1+PL)/g or fmin=2(1+Pl)/g
qdiff=max(gq-gf,0)
                                                               0.07
m = [gf/g] + [gu/g] / [1+PL(EL1-1)], (min=fmin; max=1.00)
                                                               0.00
llt=fm=[gf/g]+[gu/g]/[1+PL(EL1-1)]+[gdiff/g]/[1+PL(EL2-1)],(fmin<=fm<=1.00)
or flt=[fm+0.91(N-1)]/N**
eft-turn adjustment, fLT
                                                               0.117
For special case of single-lane approach opposed by multilane approach,
 If Pl>=1 for shared left-turn lanes with N>1, then assume de-facto
  left-turn lane and redo calculations.
** For permitted left-turns with multiple exclusive left-turn lanes, flt=fm.
or special case of multilane approach opposed by single-lane approach
when gf>gq, see text.
                      SUPPLEMENTAL PERMITTED LT WORKSHEET
```

* If Pl>=1 for shared left-turn lanes with N>1, then assume de-facto left-turn lane and redo calculations.

* For permitted left-turns with multiple exclusive left-turn lanes, flt=fm. For special case of multilane approach opposed by single-lane approach r when gf>gq, see text.

SUPPLEMENTAL PEDESTRIAN-BICYCLE EFFECTS WORKSHEET

icimitted Left Turns						
ffective pedestrian green time on (g)		EB	WB	NB	SB	11
Conflicting pedestrian volume, Vped (p/h)			55.1			
edestrian flow rate, Vpedg (p/h)			O :::			
CCpedq CCpedq (p/II)			0			
Opposing queue clearing green, gq (s)			0.000			
Eff. ped green gongumed has a see			29.19			
Eff. ped. green consumed by opp. veh. queue,	ad/ab		0.530			
			0.000			
opposing flow rate, Vo (veh/h)			1142	-	20	
			0.000			
imber of cross-street receiving lanes, Nrec			1			
Limber of turning lanes, Nturn ApbT			1 =			
			1.000			1
Coportion of left turns, PLT			1.000			
			1.000			

Proportion of left turns using protected phase, PLTA Left-turn adjustment, fLpb Permitted Right Turns		0.000 1.000	
Effective pedestrian green time, gp (s) Conflicting pedestrian volume, Vped (p/h) Conflicting bicycle volume, Vbic (bicycles/h) Vpedg	55.1 0 0		
OCCpedg Effective green, g (s) Vbicg OCCbicq	0.000 55.1 0		
OCCr Number of cross-street receiving lanes, Nrec Number of turning lanes, Nturn ApbT	0.020 0.000 1 1	a 84 N	-1 ¹
Proportion right-turns, PRT Proportion right-turns using protected phase, PRTA Right turn adjustment, fRpb	1.000 0.174 0.000 1.000	2.	
SUPPLEMENTAL UNIFORM DELAY WORKS			
Cycle length, C	EBLT	WBLT NBLT	SBLT
Adj. LT vol from Vol Adjustment Worksheet, v v/c ratio from Capacity Worksheet, X Protected phase effective green interval, g (s) Opposing queue effective green interval		282 0.45 35.0 29.19	
Red time r=(C-g-gq-gu) Arrival rate, qa=v/(3600(max[X.1.0]))		25.91 23.9 0.08	
Protected ph. departure rate, Sp=s/3600 Permitted ph. departure rate, Ss=s(gq+gu)/(gu*3600) XProt		0.480 0.13 1.90	\$0°
Case Queue at beginning of green arrow, Qa Queue at beginning of unsaturated green, Qu		5	
Residual queue, Qr Jniform Delay, d1		2.93 4.16 0.00	
Jniform Delay, d1		4.16	
Residual dueue, Or	TEInit	4.16 0.00 23.8 ial Lane e Group y Delay	73 73 14 (M)
Jniform Delay, d1 DELAY/LOS WORKSHEET WITH INITIAL QUEU Initial Dur. Uniform Delay Initial Final Appr/ Unmet Unmet Unmet Queue Unmet Lane Demand Demand Unadj. Adj. Param. Demand	Init Queue Dela	4.16 0.00 23.8 ial Lane Group y Delay	13 13 14 14 14 15

estbound

Northbound

Inte	ersection Delay	25.1	sec/veh		Int	ersection	n LOS C		
		D 3 CV			100			ā	
	Eastbound		OF QUEUE	WOR					
LaneGroup	TR		estbound		Nor	thbound	Southb	ound	
Init Queue	I	L	T .				L	R	
Flow Rate	0.0	0.0	0.0	ŀ			. 0.0	0.0	
	601	282	1453				164	104	
So	1900		1900				1900	1900	1
No.Lanes	0 2 0	1	1 0		0	0 0	1 0	1	
SL	1776		1974				1743		
LnCapacity	858	633	1560	Ec.			243	211	
_Flow_Ratio	0.34		0.74				0.09	0.07	1
v/c Ratio	0.70		0.93	59			0.67	0.49	
Grn Ratio	0.48	0.79	0.79	ĺ			0.14	0.14	C
I Factor	0.808	1	0.773				1.0		
AT or PVG	2	4	2	Ì			3	3	
Pltn Ratio	0.67	1.20	0.92				1.00	1.00	ŀ
PF2	1.12	0.25	1.06				1.00	1.00	
ρ1	16.7	0.5	38.8	- 1			4.9	3.0	ļ
kВ	1.0	0.7	0.8				0.3	0.3	
Q2	2.4	0.6	7.1				0.7	0.3	
Q Average	19.0	1.2	46.0				5.6	3.3	
2 Spacing	<u> </u>						13.0	3.3	18
2 Storage		333	100	i .					
Q S Ratio	- 3			12			ļ	22	1
70th Percent	ile Output:	•					ı		I
B%	1.2	1.2	1.1	- 1			11.2	1.2	1
L₽0Ö	22.9	1.4	52.0			14.30	6.6	4.0	
OSRatio	0	1					100	4.0	111
5th Percent		100		•			I		ı
LB*	1.4	1.6	1.4	1.2		50	1.5	1.6	ı
BOQ	26.8	1.8	62.7	- 1			8.7	5.2	
SRatio		1					3.7	3.2	ļ
0th Percent				'			I		I
TB%	1.5	1.8	1.4	- 1			1.7	1.7	i
BOQ	28.7	2.0	66.2				9.5	5.8	
SRatio				- 1			17.3	5.0	1
5th Percent	ile Output:	•		١.			I		L
IB%	1.6	2.1	1.5	- 1			1.9	2 0	
OQ	30.9		71.1			40	10.9	2.0	
SRatio	***						110.9	6.7	
98th Percent	ile Output:	100		ļ.			I	Į.	ļ
LP.	1.7	2.6	1.7	- 1			la a	0 = 1	
OQ	33.0		79.5	- (2.4	2.5	
SRatio	70 10	100	× ×			100	13.2	8.3	
<u> </u>		'		1	9				
									
<u> </u>		E	RROR MESS	A CF	S				
70				ايدب	~				

No errors to report.

24 E		¥.	
		: W	
			M 4s
	60 80 180		
	2 N Ng	· ·	6 E
	259		
		2 cm Δ	т — ж — ж

Analyst: Stacy D. Muise

Agency: O'Halloran Campbell Consultant

Inter.: Northbound Ramp/Route 214 Area Type: All other areas

07/05/2002 Date:

Jurisd: NSTPW

Period: PM Peak (4:00 to 5:00 PM)

Year : 2022 - Option No. 14 Project ID: Highway 102/Route 214 Interchange Area Transportation Study

Intersection LOS = C

ME/W St: Route 214

N/S St: Northbound Ramp

				N/S St:	North	bound R	amp		
		SIGNALITY	ביי דאייים	DORONIA.	GTT 0.				
-	Eastbound	_SIGNALIZ	bound						
	L T R		T R		rthbo			hbou	nd
		"	ı K	· L	T	R	L	T	R
No. Lanes	1 1 0		2 1						
LGConfig	LT	"		-	0	1	, 0	0	0
Volume	172 825	l ,		R L		R			
Lane Width	12.0 14.8	1	956 18	1		582			ĺ
RTOR Vol	12.0 14.0	J -	L4.8 12	.1 12.1		15.7			
1010	1	1 ·	90	ł -		150			
Duration	0.25 Are	77 Tree 7	77 1.					· ·	•
	TIC	ea Type: A	TI OFF	er areas					
Phase Combin	nation 1		4	rations_			· .	· _	- 59
LEB Left	A I			VID T - E-	5	6	7	8	
Thru	A I		,	NB Left	A				
Right	72 E	7	*	Thru					5.9.0
Peds	Х			Right	. A				
WB Left	A. A			Peds					
Thru	·	. =		SB Left			9		
Right	F		ļ	Thru					
Peds	F			Right	:	.	200		
NB Right	,	•	1	Peds					
BB Right				EB Right	:			.*	
reen	74.0	_	7	VB Right	:				85
Yellow		<u>.</u> 1			41.1				-
-All Red	3.5 3.				3.5				
LITT KEG	0.5 0.	5	20.0		0.5				
. 📗	-	= .			Cyc	le Leng	th: 1:	14.0	secs
Appr/ Lane	Inter	section P	erforma	ince Summ	ary				ದಿರದಿ
	Adj Sa	c Rat.	ios	Lane	Group	Appr	oach		59
1 1 2 2 2				38	_		53	- 51	(E. 3)
Capa Capa	city (s)	V/C	g/C	Delay	LOS	Delay	LOS	-	2.5
astbound		04	-			2			
327	1005						11		
113		0.61	0.57	35.8	D				
- 113	6 1995	0.76	0.57	4.2	A	10.1	В		
estbound							_		200
cacacadild									
T 154									19
9-114		0.70	0.40	26.8	C	26.7	C		
602	1488	0.17	0.40	25.2	-Ĉ	,,	776		
orthbound				- 	_				
L 1219	3382	0.62	0.36	31.0	С				
		400			-	22 =	~		
618	1714	0.76	0.36	37.6	D	33.5	C		
southbound		•	J	J 7.0	ע				15
CT			To.						
E 19		4.							

Intersection Delay = 24.0 (sec/veh)

HCS2000: Signalized Intersections Release 4.1c

Stacy D. Muise

Route 214 from Soeys to Superstore

Baseline

Phone: E-Mail:

Fax:

OPERATIONAL ANALYSIS

Analyst:

Agency/Co.:

Stacy D. Muise

O'Halloran Campbell Consultant 07/05/2002

Date Performed:

Analysis Time Period:

PM Peak (4:00 to 5:00 PM)

Intersection: Area Type:

Northbound Ramp/Route 214 All other areas

Jurisdiction:

NSTPW

Analysis Year:

2022 - Option No. 14

Project ID: Highway 102/Route 214 Interchange Area Transportation Study

North/South Street

East/West Street Route 214

Northbound Ramp

ACTOME	DATA

		<u> </u>			
	Eastbound L T R	Westbound L T R	Northbound L T R	Southbound L T R	
Volume % Heavy Veh PHF K 15 Vol Hi Ln Vol	172 825 0 4 0.87 0.95 49 217	956 181 3 9 0.88 0.87 272 52	606 582 4 6 0.80 0.92 189 158		
ParkExist NumPark	0 1900 1900	0 1900 1900	0 1900 1900		
TOR Vol	1 1 0 L T 12.0 14.8	0 2 1 T R 14.8 12.1	2 0 1 L R 12.1 15.7	0 0 0	
%InSharedLn	198 868		757 470	8	
rop RTs	0 0	0.000 0.000 1.000 0 0	1.000 0 0	0 ** **	7.0
		ype: All other a	reas	ž.	

_OPERATING PARAMETERS

	East	bour T	nd R	We	stbou	nd	No	rthbo		So	uthbo	und	1
Lnit Unmet Arriv. Type l nit Ext.	17	0.0 5 3.0			0.0 4 3.0	0.0 2 3.0	0.0	o T	0.0 3 3.0		T	R	-

I Factor Lost Time 2.0 2.0 Ext of g 2.0 2.0 Ped Min g	0.642 2.0 2.0 2.0 2.0 2.0 2.0	1.000 2.0 2.0	
	PHASE DATA		
Phase Combination 1 2	3 4	5 6	7 8
EB Left A P Thru A P Right Peds X X	NB Left Thru Righ Peds	ı nt A	
WB Left Thru p Right p Peds X	SB Left Thru Righ Peds	ı it	
NB Right	EB Righ	it W	
SB Right	WB Righ	t :	¥
Freen 14.8 46.1 rellow 3.5 3.5 All Red 0.5 0.5		41.1 3.5 0.5	
VOLUME ADJU	COMPAND AND CAUSED TO	Cycle Lengt	
Volume Adjustment Eastbound L T R	Westbound No. L T R L		outhbound T R
Olume, V HF 0.87 0.95 Adj flow 198 868 O. Lanes 1 1 0	956 181 606 0.88 0.87 1086 105 757 0 2 1	582 0.92 470	<u>y</u>
Adj flow 198 868 1.000 0.000 rop RTs 0.000	0 2 1 2 T R L 757 0.000 0.000 1.000	0 1 R 470	0 0 0
Saturation Flow Rate (see Ex Eastbound W So 1900 1900 anes 1 1 0 0 W 1.000 1.092	hibit 16-7 to determi	ne the adjustmand so R 1900	ent factors)outhbound

1.092 1.005 1.005

0.971 0.917 0.962

1.000 1.000 1.000

1.000 1.000 1.000

1.000 1.000 1.000

1.00

0.97

0.950

1.00

1.000 0.850

1.00

1.00

0.95

1.000

1.000 1.092

1.000 0.962

1.000 1.000

1.000 1.000

1.000 1.000

0.950 1.000

1.00

1.00

1.000

1.00

1.00

0.111

fhv

fG ₽ 1BB

fA LU RT

fLT

₽c.

1.125

0.943

1.000

1.000

1.000

1.00

1.00

0.850

1.000 1.000 fLpb 1.000 1.000 fRpb 1.000 1.000 1.000 1.000 S 1805 1995 3827 1488 3382 1714 211 Sec.

CAPACITY AND LOS WORKSHEET Capacity Analysis and Lane Group Capacity Adi Adj Sat Flow Green --Lane Group--Appr/ Lane Flow Rate Flow Rate Ratio Ratio Capacity v/c Mvmt Group (V) (s) (v/s)(g/C)(c) Ratio Eastbound Prot 198 1805 0.11 0.130 234 0.85 Perm 0 211 0.00 0.439 93 0.00 Left 198 0.57 327 0.61 Prot Perm Thru T 868 1995 # 0.44 0.57 1136 0.76 Right estbound Prot Perm Left Prot Perm Thru T 1086 3827 0.28 0.40 1548 0.70 Right R 105 1488 0.07 0.40 602 0.17 Jorthbound Prot Perm Left L 757 3382 0.22 0.36 1219 0.62 Prot Perm Thru Right R 470 1714 # 0.27 0.36 618 0.76 outhbound Prot Perm Left Prot Perm Thru Right sum of flow ratios for critical lane groups, Yc = Sum (v/s)Total lost time per cycle, L = 8.00 sec ritical flow rate to capacity ratio, XC = (YC)(C)/(C-L) = 0.76Control Delay and LOS Determination ppr/ Ratios Unf Prog Lane Incremental Res Lane Group Approach ane Del. Adj Grp Factor Del Del Grp V/C g/C d1 Fact Cap k d2 d3 Delay LOS Delay LOS astbound 0.61 0.57 18.0 1.881 327 0.19 2.0 0.0 35.8 D 0.76 0.57 18.7 0.119 1136 0.32 0.0 2.0 4.2 A 10.1 B lestbound 0.70 0.40

28.2 0.890 1548

0.50

1.7

0.0

26.8

C

26.7

C

```
Northbound
       0.62
             0.36
                   30.0
                         1.000 1219
                                      0.20
                                             1.0
                                                   0.0
                                                         31.0
                                                                      33.5
                                                                             C
       0.76
             0.36
                   32.1
                         1.000 618
                                      0.31
                                             5.5
                                                   0.0
                                                         37.6
                                                                 D
  Southbound
           Intersection delay = 24.0 (sec/veh)
                                                   Intersection LOS = C
                        SUPPLEMENTAL PERMITTED LT WORKSHEET
                                for exclusive lefts
 Input
                                                          EB
                                                                WB
                                                                      NB
                                                                             SB
 Cycle length, C
                                             114.0
                                                     sec
 Total actual green time for LT lane group, G (s)
                                                          64.9
 Effective permitted green time for LT lane group, g(s) 50.1
 Opposing effective green time, go (s)
 Number of lanes in LT lane group, N
 Number of lanes in opposing approach, No
                                                          1
 Adjusted LT flow rate, VLT (veh/h)
                                                          2
                                                          198
 Proportion of LT in LT lane group, PLT
                                                          1.000
 Proportion of LT in opposing flow, PLTo
Adjusted opposing flow rate, Vo (veh/h)
                                                          0.00
Lost time for LT lane group, tL
                                                          1086
                                                          4.00
Computation
LT volume per cycle, LTC=VLTC/3600
Opposing lane util. factor, fLUo
                                                          6.27
                                                          0.95
Opposing flow, Volc=VoC/[3600(No)fLUo] (veh/ln/cyc)
                                                                1.00
gf=G[exp(-a * (LTC ** b))]-t1, gf<=g
                                                          18.10
                                                          0.0
opposing platoon ratio, Rpo (refer Exhibit 16-11)
opposing Queue Ratio, qro=Max[1-Rpo(go/C),0]
                                                          1.33
gq, (see Exhibit C16-4,5,6,7,8)
                                                          0.46
                                                         28.93
gu=g-gq if gq>=gf, or =g-gf if gq<gf
                                                         21.17
n=Max(gq-gf)/2,0)
                                                         14.47
PTHo=1-PLTo
PL*=PLT[1+(N-1)g/(gf+gu/EL1+4.24)]
                                                         1.00
EL1 (refer to Exhibit C16-3)
                                                         1.00
L2=Max((1-Ptho**n)/Plto, 1.0)
                                                         3.80
fmin=2(1+PL)/g or fmin=2(1+Pl)/g qdiff=max(gq-gf,0)
                                                         0.08
m = [gf/g] + [gu/g] / [1 + PL(EL1 - 1)], (min = fmin; max = 1.00)
                                                         0.00
flt=fm=[gf/g]+[gu/g]/[1+PL(EL1-1)]+[gdiff/g]/[1+PL(EL2-1)],(fmin<=fm<=1.00)
or flt=[fm+0.91(N-1)]/N**
eft-turn adjustment, fLT
                                                         0.111
For special case of single-lane approach opposed by multilane approach,
 If Pl>=1 for shared left-turn lanes with N>1, then assume de-facto
 left-turn lane and redo calculations.
** For permitted left-turns with multiple exclusive left-turn lanes, flt=fm.
or special case of multilane approach opposed by single-lane approach
r when gf>gq, see text.
                  SUPPLEMENTAL PERMITTED LT WORKSHEET
```

0.17

0.40

21.8

1.140 602

0.50

0.4

0.0

25.2

```
EB
                                                                 WB
                                                                       NB
                                                                             SB
 Cycle length, C
                                             114.0
                                                     sec
 Total actual green time for LT lane group, G (s)
 Effective permitted green time for LT lane group, g(s)
 Opposing effective green time, go (s)
 Number of lanes in LT lane group, N
 Number of lanes in opposing approach, No
 Adjusted LT flow rate, VLT (veh/h)
 Proportion of LT in LT lane group, PLT
                                                          0.000 0.000
 Proportion of LT in opposing flow, PLTo
 Adjusted opposing flow rate, Vo (veh/h)
 Lost time for LT lane group, tL
 Computation
 LT volume per cycle, LTC=VLTC/3600
 Opposing lane util. factor, fLUo
                                                          0.95
                                                                1.00
 Opposing flow, Volc=VoC/[3600(No)fLUo] (veh/ln/cyc)
 gf=G[exp(- a * (LTC ** b))]-t1, gf<=g
 Opposing platoon ratio, Rpo (refer Exhibit 16-11)
 Opposing Queue Ratio, qro=Max[1-Rpo(go/C),0]
gq, (see Exhibit C16-4,5,6,7,8)
Lgu=g-gq if gq>=gf, or = g-gf if gq<gf
 n=Max(gq-gf)/2,0)
PTHO=1-PLTO
PL*=PLT[1+(N-1)g/(gf+gu/EL1+4.24)]
 EL1 (refer to Exhibit C16-3)
EL2=Max((1-Ptho**n)/Plto, 1.0)
fmin=2(1+PL)/g or
                    fmin=2(1+P1)/g
qdiff=max(gq-gf,0)
fm = [gf/g] + [gu/g] / [1 + PL(EL1 - 1)], (min = fmin; max = 1.00)
Flt=fm=[gf/g]+[gu/g]/[1+PL(EL1-1)]+[gdiff/g]/[1+PL(EL2-1)],(fmin<=fm<=1.00)
or flt=[fm+0.91(N-1)]/N**
Left-turn adjustment, fLT
```

or special case of single-lane approach opposed by multilane approach, see text.

* If Pl>=1 for shared left-turn lanes with N>1, then assume de-facto left-turn lane and redo calculations.

* For permitted left-turns with multiple exclusive left-turn lanes, flt=fm. For special case of multilane approach opposed by single-lane approach r when gf>gq, see text.

SUPPLEMENTAL PEDESTRIAN-BICYCLE EFFECTS WORKSHEET Permitted Left Turns EB WB NB Iffective pedestrian green time, gp (s) SB 46.1 Conflicting pedestrian volume, Vped (p/h) n edestrian flow rate, Vpedg (p/h) CCpedg 0.000 Opposing queue clearing green, gq (s) 28.93 fff. ped. green consumed by opp. veh. queue, gq/gp 0.628 CCpedu 0.000 Opposing flow rate, Vo (veh/h) 1086 occr0.000 umber of cross-street receiving lanes, Nrec 1 lumber of turning lanes, Nturn ApbT 1.000 coportion of left turns, PLT 1.000

```
Proportion of left turns using protected phase, PLTA
 Left-turn adjustment, fLpb
                                                          1.000
 Permitted Right Turns
 Effective pedestrian green time, gp (s)
                                                                46.1
 Conflicting pedestrian volume, Vped (p/h)
                                                                0
 Conflicting bicycle volume, Vbic (bicycles/h)
                                                                0
 Vpedq
 OCCpedg
                                                                0.000
 Effective green, q (s)
                                                                46.1
 Vbica
 occbicg
                                                               0.020
 occr
                                                               0.000
 Number of cross-street receiving lanes, Nrec
                                                               1
 Number of turning lanes, Nturn
                                                               1.000
Proportion right-turns, PRT
                                                               1.000
Proportion right-turns using protected phase, PRTA
                                                               0.000
 Right turn adjustment, fRpb
                      SUPPLEMENTAL UNIFORM DELAY WORKSHEET
                                                         EBLT
                                                               WBLT
                                                                     NBLT
                                                                            SBLT
Eycle length, C
                                            114.0
                                                    sec
Adj. LT vol from Vol Adjustment Worksheet, v
                                                         198
y/c ratio from Capacity Worksheet, X
                                                         0.61
rotected phase effective green interval, g (s)
                                                         14.8
Opposing queue effective green interval, gq
                                                         28.93
Unopposed green interval, gu
                                                         21.17
ked time r = (C - g - gq - gu)
                                                         49.1
Arrival rate, qa=v/(3600(max[X,1.0]))
                                                         0.05
Protected ph. departure rate, Sp=s/3600
                                                         0.501
 ermitted ph. departure rate, Ss=s(gq+gu)/(gu*3600)
                                                         0.14
Perm
                                                         0.94
XProt.
                                                         0.47
ase
                                                         1
 ueue at beginning of green arrow, Qa
                                                         2.70
queue at beginning of unsaturated green, Qu
                                                         1.59
Residual queue, Qr
                                                         0.00
niform Delay, d1
                                                         18.0
                 DELAY/LOS WORKSHEET WITH INITIAL QUEUE
        Initial Dur.
                         Uniform Delay
                                          Initial Final
                                                           Initial Lane
Appr/
        Unmet
                Unmet
                                         Queue
                                                  Unmet
                                                          Oueue
                                                                   Group
        Demand
Lane
                         Unadj.
                Demand
                                 Adj.
                                         Param.
                                                  Demand
                                                          Delay
                                                                   Delay
roup
        O veh
                t hrs.
                         ds
                                 dl sec
                                            u
                                                  Q veh
                                                          d3 sec
                                                                   d sec
Eastbound
```

estbound

Northbound

Inte	ersection Delay	24.0	sec/veh	Intersection	on LOS C		
	12.			ī.			
		BACK	OF OTHERS W				
	Eastbound	_DACK	OF QUEUE WO				
LaneGroup	L T	1 "	T R	Northbound L R	Southb	ound	
Init Queue	0.0 0.0		0.0 0.0	1	,		
Flow Rate	198 868		571 105	0.0 390 470		Ni.	
So	1900 1900		1900 1900	1900 190			
\bigcap No.Lanes	1 1 0	lo	2 1	2 0 1			
SL	1805 1995		2014 1488	1743 171		0	
LnCapacity			814 602	628 618			
Flow Ratio	0.11 0.44		0.28 0.07	0.22 0.2	I	+1	
v/c Ratio	0.61 0.76		0.70 0.17	0.62 0.7	I		
□Grn Ratio I Factor	0.57 0.57	ĺ	0.40 0.40	0.36 0.3	2.5	ŧi.	
AT or PVG	0.635		0.642	1.000	15		
Pltn Ratio	1 5 0.33 1.67	}	4 2	3		100	
PF2	1.74 0.24		1.33 0.67	1.00 1.0	0	141	
mQ1	5.1 5.1		0.89 1.20	1.00 1.0			
kB	0.5 0.5	1	13.4 2.5	10.2 13.			
62	0.8 1.7		0.7 0.6	0.6			
Q Average	5.8 6.8		1.7 0.1 15.1 2.7	1.0 2.3		27	
Q Spacing	0.0	E1	15.1 2.7	11.1 15.	4	5.	
Storage	. 10	1					
Q S Ratio	- P		- 12 - 12	1	- FC	1	
70th Percent	tile Output:	'			V.	2	
LB%	1.2 1.2	1	1.2 1.3	1.2	3.		
BOO	6.9 8.0	9000	18.2 3.4	13.1 18.0		8	
OSRatio		5		10.		J	
\$5th Percent				1	(*)	ı	
EB%	1.5 1.5	ļ	1.4 1.6	1.5	- E	ı	
[2]SRatio	9.0 10.5		21.3 4.2	16.8 22.8	3 (
	41.0	İ				İ	
0th Percent			98			I	
ВоО		ł	1.5 1.8	1.6 1.6		88	
SRatio	9.9 11.5	ļ	23.0 4.8	18.1 24.4	L J	- 2	
5th Percent	ile Output.			W 55	:5		
fB%	1.9 1.9	ı	1 6 6 6 1	_		ľ	
	11.3 13.0		1.6 2.2	1.8		1	
SRatio	55.0	100	24.9 5.8	20.3 27.0) /ii		
98th Percent	ile Output.		W				
୍ର ।	2.3 2.3		1.8 2.6	2 1			
OQ	13.7 15.6		26.7 6.9	2.1 2.0			
USRatio	- · ·		20.7 6.9	23.7 30.9			
·	75 %		i		1	25	
	7		17				_
tad .		E	RROR MESSAG	ES			
	N (1 5) 2						

No errors to report.

		40)	
	gi.		
		*	H
		5	
		6°	
		TRE	
	, ñ		
		No.	
il	327	** W	£ .
		15	
			a d
			2 2
25 %	5 5 N 4 g		
			1.5
	2 *		W 18

HCS2000: Signalized Intersections Release 4.1c Analyst: Stacy D. Muise Inter.: Elmsdale Shop Centre/Route 214 Agency: Route 214 from Soeys to Superst Area Type: All other areas Agency: O'Halloran Campbell Consultant Area Type: All other areas 07/05/2002 Jurisd: NSTPW period: PM Peak (4:00 to 5:00 PM) Year : 2022 - Option No. 14 Project ID: Highway 102/Route 214 Interchange Area Transportation Study N/S St: Elmsdale Shopping Centre SIGNALIZED INTERSECTION SUMMARY Eastbound Westbound Northbound Southbound L Т R L T R L Т Ļ T R No. Lanes 1 $\overline{2}$ ī Ō 0 Ō 0 LGConfig 1 L T Т R L Volume 506 R 901 694 339 391 Lane Width 12.1 12.1 443 12.1 12.1 12.1 RTOR Vol 11.2 0 0 Duration 0.25 Area Type: All other areas Signal Operations Phase Combination 1 2 5 6 EB 7 Left 8 Α Ρ NB Left Thru Α P Thru Right Right Peds X X Peds WB Left SB Left Α Thru P Thru Right P Right A Peds X Peds NB Right EB Right SB Right A WB Right Green 39.0 39.1 20.1 Yellow 4.5 4.5 3.0 All Red 0.5 1.4 1.9 Cycle Length: 114.0 Intersection Performance Summary secs Appr/ Lane Adj Sat Ratios Lane Group Approach Jane Group Flow Rate Erp Capacity (s) v/c g/C Delay LOS Delay Los astbound 762 1777 0.80 0.74 40.3 D T 1329 1801 0.77 0.74 3.9 A 17.5 В estbound 1242 3454 0.61 0.36 32.3 C 33.5 C 577 1605 0.65 0.36 36.0 orthbound D Southbound 642

3483

1554

Intersection Delay = 26.6

885

0.78

0.54

0.18

0.57

(sec/veh)

50.5

16.0

D

В

33.6

Intersection LOS = C

HCS2000: Signalized Intersections Release 4.1c

Stacy D. Muise

Route 214 from Soeys to Superstore

Baseline

Phone:

E-Mail:

E-Mail:

Analyst:

Stacy D. Muise

Agency/Co.: Agency/Co.: Route 214 from Soeys to Superst O'Halloran Campbell Consultant

Analysis Time Period:

4:00 pm

Intersection:

Elmsdale Shop Centre/Route 214

Intersection:

Rte 214 & Elmsdale Shopping Cen2022 - Option No. 14

Fax:

Jurisdiction:

Jurisdiction:

NSTPW

Analysis Year:

2022 - Option No. 14

project ID: Rte 214

Highway 102/Route 214 Interchange Area Transportation Study

Elmsdale Shopping Centre

Route 214

Elmsdale Shopping Centre

VOLUME DATA

1													
		stbou	nd	We	stbou	nd	l No:	rthbo	ound	l sou	thbo	und	
	L	Т	R	L	T	R	L	T	R	L	T	R	1
Volume % Heavy Veh HF K 15 Vol	506 2 0.83 152	901 6 0.88 256			694 5 0.91 191	339 1 0.91 93	3		m	391 1 0.78 125	77.	443 1 0.92	
ParkExist	1900	0 1900			0	1900				1900)	120	
TOR Vol	1 L 12.1 610	1 T 12.1	0 %2 1	0	2 T 12.1	1 R 12.1 0 373	0	0	0	2 L 12.1	0	1 R 11.2	83
%InSharedLn rop LTs rop RTs reds Bikes	1.000	0.00	0		0.00	000	()			501	:	482 1.000	i.
Buses InProtPhase		0	Area T		0 All o	0 ther a	0 ireas			0 0		0 🕳	

OPERATING PARAMETERS

	Ea L	stbou T	ınd R	Westbou	and R	Northb L T	ound R	Sou L	thbo T	und R
Mit Unmet Arriv. Type Whit Ext.	0.0 2 3.0	0.0 4 3.0	58 G	0.0 3 3.0	0.0 3 3.0		di.	0.0 3 3.0		0.0 3 3.0

I Factor Lost Time Ext of g Ped Min g	0.682 2.0 2.0 3.0 3.0	1.000 2.0 2.0 3.9 3.9		1.000 2.0 2.9 2.9
		PHASE DAT	'A	·
Phase Comb	ination 1 2	3 = 4	5 6	5 7 8
EB Left Thru Right Peds	A P A P		Left Thru Right Peds	
WB Left Thru Right Peds	P P X	SB	Left A Thru Right A Peds	
NB Right		EB	Right	
SB Right	A A	WB	Right	
Green Yellow All Red	39.0 39 4.5 4.5 0.5 1.4	5	20.1 3.0 1.9	
			Cycle	Length: 114.0 secs
Volume Adju	VOLUME AI	JUSTMENT AND SATU	RATION FLOW WOR	KSHEET
	Eastbound	Westbound	Northbound	I Country to
m	LTR	L T R	L T R	Southbound L T R
Volume, V	506 901	694 339	, 12°	- -
PHF Adj flow	0.83 0.88	0.91 0.91		391 443 0.78 0.92
lo. Lanes	610 1024	763 373	· .	501 482
Lane group	LTT	0 2 1 T R	0 0 0	2 0 1
Adj flow rop LTs	610 1024	763 373		L R 501 482
rop RTs	1.000 0.000 0.000	0.000		. × ×
Saturation	Flow Bate /			1.000
		Exhibit 16-7 to d Westbound	etermine the adj Northbound	ustment factors)
G L SO 1900	T	T R	or of other	Southbound L R
anes 1	1900 1 0 0	1900 1900 2 1 0	•	1900 1900
W 1.005	1.005	2 1 0 1.005 1.005	0 0	2 0 1
fW 0.980	0.943	0.952 0.990		1.005 0.972 0.990 0.990
G 1.000 P 1.000 IBB 1.000	1.000	1.000 1.000		0.990 1.000 1.000
IBB 1.000		1.000 1.000	***	1.000 1.000

1.000 1.000

1.000 0.850

1.00

1.00

1.00

0.95

1.000

1.000 1.000 1.00 1.00

0.950 1.000

1.00

1.000

1.00

0.190

fA LU RT

fLT

1.000

1.00 0.97

0.950

1.000

1.000

1.00

1.00

0.850

1.000 1777 1801 3454 1605 3483 1554 356 Sec. CAPACITY AND LOS WORKSHEET Capacity Analysis and Lane Group Capacity Adj Adj Sat Flow Green --Lane Group--Appr/ Lane Flow Rate Flow Rate Ratio Ratio Capacity V/C Mvmt Group (v) (s) (v/s)(q/C)(c) Ratio Eastbound Prot 610 1777 # 0.34 0.351 624 0.98 Perm 0 356 0.00 0.387 138 0.00 Left L 610 0.74 762 0.80 Prot Perm Thru T 1024 1801 0.57 0.74 1329 0.77 Right lestbound Prot Perm Left Prot Perm Thru Т 763 3454 0.22 0.36 1242 0.61 Right R 373 1605 # 0.23 0.36 577 0.65 Northbound Prot Perm Left Prot Perm Thru Right outhbound Prot Perm Left L 501 3483 # 0.14 0.18 642 0.78 Prot Perm Thru Right R 482 1554 0.31 0.57 885 0.54 Sum of flow ratios for critical lane groups, Yc = Sum (v/s) 0.72Total lost time per cycle, L = 12.90 sec (ritical flow rate to capacity ratio, Xc = (Yc)(C)/(C-L) = 0.81Control Delay and LOS Determination i ppr/ Ratios Unf Proq Lane Incremental Res Lane Group l ine Approach Del Adj Grp : Factor Del Del Grp v/c g/c̄ d1 Fact Cap k d2 d3 Delay LOS Delay Los stbound 0.80 0.74 20.0 1.802 762 0.34 4.3 0.0 40.3 D 0.77 0.74 9.1 0.219 1329 0.32 2.0 0.0 3.9 Α 17.5 B W_stbound 0.61 0.36 30.0 1.000 1242 0.50 2.3 0.0 32.3 C 33.5 C

1.000

1.000 0.999

1.000

1.000 1.000

1.000

fLpb

ERpb

```
0.65 0.36 30.5 1.000 577 0.50
                                             5.5
                                                   0.0
                                                         36.0
 Northbound
  Southbound
       0.78 0.18
 \mathbf{L}
                   44.3
                         1.000 642
                                     0.33
                                            6.2
                                                         50.5
                                                                D
                                                                     33.6
                                                                            C
       0.54
             0.57
                   15.3
                         1.000 885
                                     0.14
                                            0.7
                                                   0.0
                                                         16.0
          Intersection delay = 26.6
                                      (sec/veh)
                                                   Intersection LOS = C
                        SUPPLEMENTAL PERMITTED LT WORKSHEET
                                for exclusive lefts
 Input
                                                         EB
                                                                WB
                                                                      NB
                                                                            SB
 Cycle length, C
                                            114.0
                                                    sec
 Total actual green time for LT lane group, G (s)
 Effective permitted green time for LT lane group, g(s) 44.1
 opposing effective green time, go (s)
Number of lanes in LT lane group, N
 Number of lanes in opposing approach, No
                                                         2
 Adjusted LT flow rate, VLT (veh/h)
                                                         610
 proportion of LT in LT lane group, PLT
 Proportion of LT in opposing flow, PLTo
                                                         1.000
                                                         0.00
 Adjusted opposing flow rate, Vo (veh/h)
                                                         763
 ost time for LT lane group, tL
                                                         4.90
 Computation
LT volume per cycle, LTC=VLTC/3600
                                                         19.32
 pposing lane util. factor, fLUo
                                                         0.95
 pposing flow, Volc=VoC/[3600(No)fLUo] (veh/ln/cyc)
                                                         12.72
gf=G[exp(- a * (LTC ** b))]-tl, gf<=g
                                                         0.0
 pposing platoon ratio, Rpo (refer Exhibit 16-11)
                                                         1.00
 pposing Queue Ratio, qro=Max[1-Rpo(go/C),0]
                                                         0.64
gq, (see Exhibit C16-4,5,6,7,8)
                                                         20.96
qu=g-gq if gq>=gf, or =g-gf if gq<gf
                                                         23.14
 =Max(gq-gf)/2,0)
                                                         10.48
THo=1-PLTo
                                                         1.00
PL*=PLT[1+(N-1)g/(gf+gu/EL1+4.24)]
                                                         1.00
 L1 (refer to Exhibit C16-3)
                                                         2.76
 L2=Max((1-Ptho**n)/Plto, 1.0)
fmin=2(1+PL)/g or fmin=2(1+P1)/g
                                                         0.09
rdiff=max(gq-gf,0)
                                                         0.00
 m = [gf/g] + [gu/g] / [1+PL(EL1-1)], (min=fmin; max=1.00)
ht=fm=[gf/g]+[gu/g]/[1+PL(EL1-1)]+[gdiff/g]/[1+PL(EL2-1)],(fmin<=fm<=1.00)
                                                         0.19
or flt=[fm+0.91(N-1)]/N**
eft-turn adjustment, fLT
                                                         0.190
Left-turn adjustment, fLT
                                                         0.190
For special case of single-lane approach opposed by multilane approach,
 If Pl>=1 for shared left-turn lanes with N>1, then assume de-facto
 left-turn lane and redo calculations.
** For permitted left-turns with multiple exclusive left-turn lanes, flt=fm.
r special case of multilane approach opposed by single-lane approach
or when gf>gq, see text.
                      SUPPLEMENTAL PERMITTED LT WORKSHEET
```

```
EB
                                                                WB
                                                                      NB
                                                                            SB
 Cycle length, C
                                            114.0
                                                    sec
 Total actual green time for LT lane group, G (s)
 Effective permitted green time for LT lane group, g(s)
 Opposing effective green time, go (s)
Number of lanes in LT lane group, N
Number of lanes in opposing approach, No
 Adjusted LT flow rate, VLT (veh/h)
Proportion of LT in LT lane group, PLT
                                                         0.000 0.000
Proportion of LT in opposing flow, PLTo
 Adjusted opposing flow rate, Vo (veh/h)
 Lost time for LT lane group, tL
Computation
T volume per cycle, LTC=VLTC/3600
 Opposing lane util. factor, fLUo
                                                         0.95
                                                               1.00
 Dpposing flow, Volc=VoC/[3600(No)fLUo] (veh/ln/cyc)
f=G[exp(- a * (LTC ** b))]-t1, gf<=g
Opposing platoon ratio, Rpo (refer Exhibit 16-11)
Opposing Queue Ratio, qro=Max[1-Rpo(go/C),0]
 jq, (see Exhibit C16-4,5,6,7,8)
gu=g-gq if gq>=gf, or = g-gf if gq<gf
n=Max(gq-gf)/2,0)
 PTHo=1-PLTo
PL*=PLT[1+(N-1)g/(gf+gu/EL1+4.24)]
EL1 (refer to Exhibit C16-3)
FL2=Max((1-Ptho**n)/Plto, 1.0)
min=2(1+PL)/g or fmin=2(1+Pl)/g
gdiff=max(gq-gf,0)
fm = [gf/g] + [gu/g] / [1+PL(EL1-1)], (min=fmin; max=1.00)
lt=fm=[gf/g]+[gu/g]/[1+PL(EL1-1)]+[gdiff/g]/[1+PL(EL2-1)],(fmin<=fm<=1.00)
Let flt=[fm+0.91(N-1)]/N**
Left-turn adjustment, fLT
 eft-turn adjustment, fLT
or special case of single-lane approach opposed by multilane approach,
see text.
\star If Pl>=1 for shared left-turn lanes with N>1, then assume de-facto
  left-turn lane and redo calculations.
\sqcup* For permitted left-turns with multiple exclusive left-turn lanes, flt=fm.
For special case of multilane approach opposed by single-lane approach
 r when gf>gq, see text.
```

SUPPLEMENTAL PEDESTRIAN-BICYCLE Permitted Left Turns	E EFFECTS	WORKS	HEET_		•
Effective pedestrian green time, gp (s) Conflicting pedestrian volume, Vped (p/h) edestrian flow rate, Vpedg (p/h)		EB 39.1 1	WB	NB	SB
Opposing queue clearing green, gq (s) Opposing queue clearing green, gq (s) CCpedu		0.001 20.96 20.96 0.001		· 15	
Opposing flow rate, Vo (veh/h) OCCr Imber of cross-street receiving lanes, Nrec		763 0.000 1			
ApbT coportion of left turns, PLT		L.000 L.000		# S	

```
Proportion of left turns, PLT
                                                         1.000
 Left-turn adjustment, fLpb
                                                         1.000
 Left-turn adjustment, flpb
                                                         1.000
 Effective pedestrian green time, gp (s)
                                                               39.1
 Conflicting pedestrian volume, Vped (p/h)
                                                               1
 Conflicting bicycle volume, Vbic (bicycles/h)
                                                               0
 Vpedg
                                                               2
 OCCpedg
                                                               0.001
 Effective green, g (s)
                                                               41.0
 Effective green, g (s)
                                                               41.0
 OCCbicg
                                                               0.020
 bccr
                                                               0.001
 Number of cross-street receiving lanes, Nrec
 Number of turning lanes, Nturn
                                                               0.999
Proportion right-turns, PRT
                                                               1.000
Proportion right-turns using protected phase, PRTA
                                                               0.000
 Right turn adjustment, fRpb
Right turn adjustment, fRpb
                      SUPPLEMENTAL UNIFORM DELAY WORKSHEET
                                                         EBLT
                                                               WBLT
                                                                     NBLT
                                                                           SBLT
Cycle length, C
                                            114.0
                                                   sec
Adj. LT vol from Vol Adjustment Worksheet, v
                                                       610
r/c ratio from Capacity Worksheet, X
                                                         0.80
protected phase effective green interval, g (s)
                                                         40.0
Opposing queue effective green interval, gq
                                                         20.96
Unopposed green interval, gu
                                                         23.14
Red time r=(C-g-gq-gu)
                                                         29.9
Arrival rate, qa=v/(3600(max[X,1.0]))
                                                         0.17
Protected ph. departure rate, Sp=s/3600
                                                        0.494
 ermitted ph. departure rate, Ss=s(gq+gu)/(gu*3600)
                                                        0.19
∴Perm
                                                        1.71
XProt
                                                        0.60
lase
                                                        3
ueue at beginning of green arrow, Qa
                                                        8.18
Queue at beginning of unsaturated green, Qu
                                                        3.55
Residual queue, Qr
                                                        3.11
niform Delay, dl
                                                        20.0
                 DELAY/LOS WORKSHEET WITH INITIAL QUEUE
        Initial Dur.
                         Uniform Delay
                                         Initial Final
                                                          Initial Lane
        Unmet
Appr/
                Unmet
                                         Oueue
                                                  Unmet
                                                          Queue
                                                                   Group
Tane
        Demand
                Demand
                        Unadj.
                                 Adj.
                                                  Demand Delay
                                         Param.
                                                                   Delay
roup
        Q veh
                t hrs.
                                 d1 sec
                                                  Q veh
                                                          d3 sec
                                                                   d sec
Eastbound
```

estbound

Northbound

Inte	ersection Delay	26.6	sec/veh	Intersect	ion LOS C	
		BACK	OF QUEUE WO	RKSHEET		
LF	Eastbound	_ ∈₩	estbound	Northbound	d South	201129
LaneGroup	L T		T R		_ L	
Init Queue	0.0 0.0		0.0 0.0		0.0	R
low Rate	610 1024		401 373		258	0.0
So	1900 1900		1900 1900		1900	482
┌№o.Lanes	1 1 0	0	2 1	0 0 0	2 0	1900
ŞL	1777 1801		1817 1605		1795	1
LnCapacity	762 1329		653 577		330	1554
Flow Ratio	0.34 0.57		0.22 0.23	l N	0.14	885
//c Ratio	0.80 0.77		0.61 0.65	=	0.78	0.31 0.54
∟Grn Ratio	0.74 0.74		0.36 0.36		0.18	0.54
I Factor	0.682		1.000	1	1.0	
AT or PVG	2 4		3 3		3	3
Pltn Ratio	0.67 1.29		1.00 1.00	(E)	1.00	1.00
PF2	1.00 1.00	18	1.00 1.00		1.00	1.00
<u> 1</u> 21	7.0 19.7	1.00	10.4 9.9	940	7.8	9.5
В	0.6 0.6		1.0 0.9		0.4	0.7
1.52	0.0 0.0		0.0 0.0		0.0	0.0
Q Average	7.0 19.7		10.4 9.9		7.8	9.5
Spacing	77	mi.	S.			3.5
Storage	S					28
Q S Ratio					(X)	
B%	tile Output:	1			,	
00	1.2 1.2 8.3 22.9		1.2 1.2		1.2	1.2
QSRatio "	8.3 22.9		12.7 12.0		9.2	11.2
	ile Output:	1	ļ	•		
B%	1.5 1.5	1				•
BOQ	10.8 28.7	J	1.4 1.4		1.5	1.5
\SRatio	10.8 28.7		15.0 14.2		11.9	14.5
	ile Output:	2			20	
IB%	1.7 1.5	ř	1 6 1 6 1	- 5		24
BOQ	11.8 30.5		1.6 1.6		1.7	1.6
SRatio	11.0 30.3	39	16.3 15.5		13.0	15.7
5th Percent	ile Output.	I	ľ			10
fB%	1.9 1.7	I	:: 1		la :	·
	13.4 33.5		1.7 1.7		1.9	1.9
SRatio	70.7		18.0 17.1		14.7	17.7
98th Percent	ile Output.	1	. 5			96
fB%	2.3 1.9	1	10.10		1.5	
i þQ	16.1 37.8		1.9 1.9 19.7 18.8		2.2	2.2
SRatio	=		19.7 18.8		17.5	20.8
·		1 =	i		8	90
35	P0					
<u> </u>		EI	RROR MESSAGI	ES		
			Y ₁₀			

No errors to report.